用matlab解复杂方程组[x,y,z,t0,v]=solve('(v^2)*(1269-t0)^2=(500-x)^2+(3300-y)^2+(0-z)^2','(v^2)*(1169-t0)^2=(300-x)^2+(200-y)^2+(0-z)^2','(v^2)*(891-t0)^2=(800-x)^2+(1600-y)^2+(0-z)^2','(v^2)*(797-t0)^2=(1400-x)^2+(2200-y)^2+(0-z)^2','(v^2)*(70
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:09:41
用matlab解复杂方程组[x,y,z,t0,v]=solve('(v^2)*(1269-t0)^2=(500-x)^2+(3300-y)^2+(0-z)^2','(v^2)*(1169-t0)^2=(300-x)^2+(200-y)^2+(0-z)^2','(v^2)*(891-t0)^2=(800-x)^2+(1600-y)^2+(0-z)^2','(v^2)*(797-t0)^2=(1400-x)^2+(2200-y)^2+(0-z)^2','(v^2)*(70
用matlab解复杂方程组
[x,y,z,t0,v]=solve('(v^2)*(1269-t0)^2=(500-x)^2+(3300-y)^2+(0-z)^2','(v^2)*(1169-t0)^2=(300-x)^2+(200-y)^2+(0-z)^2','(v^2)*(891-
t0)^2=(800-x)^2+(1600-y)^2+(0-z)^2','(v^2)*(797-t0)^2=(1400-x)^2+(2200-y)^2+(0-z)^2','(v^2)*(706-t0)^2=(1700-x)^2+(700-y)^2+(0-z)
^2','(v^2)*(887-t0)^2=(2300-x)^2+(2800-y)^2+(0-z)^2','(v^2)*(614-t0)^2=(2500-x)^2+(1900-y)^2+(0-z)^2','(v^2)*(706-t0)^2=(2900-x)
^2+(900-y)^2+(0-z)^2','(v^2)*(1077-t0)^2=(3200-x)^2+(3100-y)^2+(0-z)^2','(v^2)*(1009-t0)^2=(3400-x)^2+(100-y)^2+(0-z)^2')
用matlab解复杂方程组[x,y,z,t0,v]=solve('(v^2)*(1269-t0)^2=(500-x)^2+(3300-y)^2+(0-z)^2','(v^2)*(1169-t0)^2=(300-x)^2+(200-y)^2+(0-z)^2','(v^2)*(891-t0)^2=(800-x)^2+(1600-y)^2+(0-z)^2','(v^2)*(797-t0)^2=(1400-x)^2+(2200-y)^2+(0-z)^2','(v^2)*(70
对,你的方程个数多于你的未知数个数了,所以是不一定能解出来的.这应该是一个求最优解的问题,就是所需解代入原方程后使某个特定参数的方差为最小.由于你的方程组不是那种典型的二元一次方程组,不能用最小二乘法解,解法我也就不清楚了.水平有限,无能为力……
你是想单独解每一个方程还是解他们组成的方程组啊?,我突然想到可能是前者呃