log(a^n)M=1/n×log(a) M,用对数换底公式怎么证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:36:40
log(a^n)M=1/n×log(a) M,用对数换底公式怎么证明
log(a^n)M=1/n×log(a) M,用对数换底公式怎么证明
log(a^n)M=1/n×log(a) M,用对数换底公式怎么证明
log(a^n)M
=loga(M)/loga(a^n)
=loga(M)/n
即log(a^n)M=1/n×log(a) M
换底公式loga(b)=logx(b)/logx(a)这里是以x为底换的
我做的时log(a^n)M它意a为底数换的即loga(a^n)/loga(M)
懂了没
log(a)M+log(a)N=?
证明a(log(m)n)=n(log(m)a)
log a (m^n)=(log a m)^n?
log(a^n)M= 1/n log(a)(M) log(a^n)M= n log(a)(M) 哪个对啊求神回复
证明对数运算法则(1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N);(1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R)
求证 log(a) (M·N)=log(a) M+log(a) N
log(下标a)(M*N)是什么意思?= log(下标a)M+log(下标a)N
为什么log(a^n)(M)=1/n×log(a)(M)
推导log(a)(M/N)
log(a^n)(M)=1/nlog(a)(M)..
log(a)(mn)=log(a)(m)+log(a)(n)为什么呀?
换底公式推导过程1.log(a)(b)=1/log(b)(a) 2.log(a^n)(b^m)=m/n*[log(a)(b)] 3.log(a)(M^n)=nlog(a)(M)
求对数函数公式的推导log(a)(M^n)=nlog(a)(M) 和log(a)(N)=log(b)(N) / log(b)(a) 的推导
证明log(a^m)b^n=(n/m)log(a)b
log a^m(b^n)=(n/m)*log a(b)
log(a^n)M=1/n×log(a) M,用对数换底公式怎么证明
对数log(a^n)M=1/n×log(a) M怎么证明?只能 用换底公式证明么?
对数运算有这样的公式么?log(a^n)(M)=1/n*log(a)(M)