大一高数常系数非齐次线性微分方程关于f ( x ) = e λ x [ Pl ( x ) cos ω x ~ + Pn ( x ) sin ω x ] 型λ+iw是特征方程的根,而 λ-iw不是,那么k取0还是1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:23:07

大一高数常系数非齐次线性微分方程关于f ( x ) = e λ x [ Pl ( x ) cos ω x ~ + Pn ( x ) sin ω x ] 型λ+iw是特征方程的根,而 λ-iw不是,那么k取0还是1
大一高数常系数非齐次线性微分方程
关于f ( x ) = e λ x [ Pl ( x ) cos ω x ~ + Pn ( x ) sin ω x ] 型
λ+iw是特征方程的根,而 λ-iw不是,那么k取0还是1

大一高数常系数非齐次线性微分方程关于f ( x ) = e λ x [ Pl ( x ) cos ω x ~ + Pn ( x ) sin ω x ] 型λ+iw是特征方程的根,而 λ-iw不是,那么k取0还是1
这种情况是不可能出现的,特征方程的根为虚数时,必有一对共轭虚数为特征根,