一道高数(微分方程)的题目!已知微分方程dy/dx+p(x)y=f(x).有两个特解y1=-1/4x^2 y2=-1/4x^2-4/(x^2)求满足的p(x),f(x),并给出方程通解.key:2/x -xC4/(x^2)-1/4x^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:26:23

一道高数(微分方程)的题目!已知微分方程dy/dx+p(x)y=f(x).有两个特解y1=-1/4x^2 y2=-1/4x^2-4/(x^2)求满足的p(x),f(x),并给出方程通解.key:2/x -xC4/(x^2)-1/4x^2
一道高数(微分方程)的题目!
已知微分方程dy/dx+p(x)y=f(x).
有两个特解y1=-1/4x^2 y2=-1/4x^2-4/(x^2)
求满足的p(x),f(x),并给出方程通解.
key:
2/x
-x
C4/(x^2)-1/4x^2

一道高数(微分方程)的题目!已知微分方程dy/dx+p(x)y=f(x).有两个特解y1=-1/4x^2 y2=-1/4x^2-4/(x^2)求满足的p(x),f(x),并给出方程通解.key:2/x -xC4/(x^2)-1/4x^2
(y1)'=(1/4x^2)'=1/2*x
(y2)'=-1/2*x+8/(x^3)
将y1 y2 和(y1)’ (y2)'代入微分方程,得
-1/2*x-1/4*x^2*p(x)=f(x) (1)
-1/2*x+8/(x^3)-1/4x^2 p(x)+4/(x^2) p(x)=f(x) (2)
两式相减,得4/x^2 *p(x)=8/x^3
于是p(x)=2/x
代入(1)式,得f(x)=-x
于是原微分方程为y’+2/x*y=-x
此为标准的一阶线性方程,代入公式得:C4/(x^2)-1/4x^2
上面微分方程也可以这样作:
(xy'+2y)/x=-x
x^2y'+2xy=-x3
(x^2y)'=-x^3
x^2y=-1/4*x^2+c'
y=-1/4x^2+c'/(x^2)
c'为常数,此可做为答案,若让其同参考答案一致,令c’=4c