二次函数难题!1.已知抛物线y=ax^2+bx+c(a>0),过A(1,0),对称轴为x=3,顶点为B,直线y=kx+m(k≠0)过A,B两点,它与两坐标轴围成三角形的面积为2,求这两个函数的解析式.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:20:14
二次函数难题!1.已知抛物线y=ax^2+bx+c(a>0),过A(1,0),对称轴为x=3,顶点为B,直线y=kx+m(k≠0)过A,B两点,它与两坐标轴围成三角形的面积为2,求这两个函数的解析式.
二次函数难题!
1.已知抛物线y=ax^2+bx+c(a>0),过A(1,0),对称轴为x=3,顶点为B,直线y=kx+m(k≠0)过A,B两点,它与两坐标轴围成三角形的面积为2,求这两个函数的解析式.
二次函数难题!1.已知抛物线y=ax^2+bx+c(a>0),过A(1,0),对称轴为x=3,顶点为B,直线y=kx+m(k≠0)过A,B两点,它与两坐标轴围成三角形的面积为2,求这两个函数的解析式.
从解析式y=kx+m可知,该直线与坐标轴的交点为(0,m)和(-m/k,0)由已知直线y=kx+m过A(1,0),因此(-m/k,0)即为(1,0),因此直线y=kx+m与两坐标轴围成的三角形的两条直角边的长度分别为:|m|和1,根据已知三角形面积为2,因此:|m|/2=2,|m|=4.
已知抛物线y=ax^2+bx+c(a>0),因此抛物线开口向上;已知抛物线过A(1,0)且以x=3为对称轴,可知抛物线的顶点B的x坐标为3,y坐标小于0,又因为直线y=kx+m过B点,所以直线与y 轴的交点的纵坐标一定大于0,因此m=4.
因为直线y=kx+m过A(1,0)将坐标代入解析式得:k+m=0,即:k=-m,所以k=-4
因此直线y=kx+m的解析式为:y=-4x+4.
已知抛物线y=ax^2+bx+c(a>0),因此抛物线开口向上;已知抛物线过A(1,0)且以x=3为对称轴,因此可知抛物线过点(5,0).
因此直线y=-4x+4过抛物线的定点B,由前述可知抛物线的顶点的x坐标为3,代入直线的解析式得y=-4*3+4=-8,所以抛物线的顶点B坐标为(3,-8)
由此,抛物线经过点(1,0),(3,-8),(5,0)将三点坐标代入抛物线的解析式:y=ax^2+bx+c得:
a+b=c=0 (1)
25a+5b+c=0 (2)
9a+3b+c=-8 (3)
解此三元一次方程组得:a=2,b=-12,c=10
因此:抛物线的解析式为:y=2x^2-12x+10
y=1/2(x-3)²-2(这是顶点式),你要有三角形面积求出B点的纵坐标,即知其顶点,又经过A点可求其顶点式,这是考数形结合,务必掌握!
A(1,0)对称轴为x=3,∴抛物线y=ax^2+bx+c经过(5,0)
直线y=kx+m(k≠0)过A,B两点,它与两坐标轴围成三角形的面积为2∴顶点坐标为(3,2)
y=a(x-1)(x-5)代入(3,2)
得a=-1/2
y=-1/2x²+2x-5/2;
直线方程就自己求
谁知道?
依题意顶点B在第四象限。A(1,0),
直线y=kx+m(k≠0)过A,B两点,它与两坐标轴围成三角形的面积为2
所以m=4,K=-4
直线的解析式为y=-4x+4
对称轴为x=3,所以顶点为B(3,-8)
可得:-b/(2...
全部展开
依题意顶点B在第四象限。A(1,0),
直线y=kx+m(k≠0)过A,B两点,它与两坐标轴围成三角形的面积为2
所以m=4,K=-4
直线的解析式为y=-4x+4
对称轴为x=3,所以顶点为B(3,-8)
可得:-b/(2a)=3
a+b+c=0
(4ac-b^2)/(4a)=-8
解出a,b,c即可
收起