已知PA⊥圆O所在平面,AB是圆O直径,C是异于A B的圆周上任意一点,过点A作AE⊥PC于点E,求证AE⊥平面PBC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:52:38

已知PA⊥圆O所在平面,AB是圆O直径,C是异于A B的圆周上任意一点,过点A作AE⊥PC于点E,求证AE⊥平面PBC
已知PA⊥圆O所在平面,AB是圆O直径,C是异于A B的圆周上任意一点,过点A作AE⊥PC于点E,求证AE⊥平面PBC

已知PA⊥圆O所在平面,AB是圆O直径,C是异于A B的圆周上任意一点,过点A作AE⊥PC于点E,求证AE⊥平面PBC
证明:∵PA⊥平面ABC,∴PA⊥BC.
又∵AB是⊙O的直径,∴BC⊥AC.而PC∩AC=C,
∴BC⊥平面ABC.
又∵AE在平面PAC内,∴BC⊥AE.
∵PC⊥AE,且PC∩BC=C,
∴AE⊥平面PBC.

已知PA垂直于圆O所在平面,AB是圆O的直径,C是圆O上任意一点,过点A做AE⊥PC与点E,求证:AE⊥平面PBC 一道数学题:已知PA垂直圆O所在的平面,AB是圆O的直径,C是圆O上任意一点,过A作AE垂直PC于E,求证:AE...一道数学题:已知PA垂直圆O所在的平面,AB是圆O的直径,C是圆O上任意一点,过A作AE垂直PC于E, 已知AB是圆O的直径,C是圆周上不同于A,B的点,PA垂直于圆O所在的平面,AE⊥PC于E,求平面ABE⊥平面PBC 已知PA⊥圆O所在平面,AB是圆O直径,C是异于A B的圆周上任意一点,过点A作AE⊥PC于点E,求证AE⊥平面PBC AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上的任意一点,求证:BC⊥面PAC (立体几何)AB是圆O直径,C是异于A B的圆周上任意一点,PA垂直于圆O所在平面,则BC和PC已知:AB是圆O直径,C是异于A B的圆周上任意一点,PA垂直于圆O所在平面.求证:BC和PC垂直 已知PA垂直于圆O所在的平面,AB是圆O的直径,C是圆O上任意一点,过A做AE垂直PC于E证:AE垂直于平面PBC 直线与平面的位置关系数学题解答已知AB是圆O的直径,C在圆O上,PA垂直于圆O所在的平面,求证PC垂直于BC. 如图所示:AB是圆O的直径,PA垂直于圆O所在的平面α,C是圆周上不同于A,B的任意一点,且PA=AB.求直线...如图所示:AB是圆O的直径,PA垂直于圆O所在的平面α,C是圆周上不同于A,B的任意一点,且PA=AB.求 如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周异于A,B的任意一点,求证(1)BC⊥平面PAC.(2)平面PAC⊥平面PBC 设AB是圆O的的直径.C是圆周上的任意一点,PA垂直平面ABC(P为圆O所在平面外一点)求证:平面PAC垂直平面PB设AB是圆O的的直径.C是圆周上的任意一点,PA垂直平面ABC,(P为圆O所在平面外一点)求证: 如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证求求你们了求证:BC⊥平面PAC AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上不同于A,B的任一点,求证:BC⊥平面PAC 已知PA⊥圆o所在的平面,AB是圆o的直径,AB=2,C是圆o上一点,且PA=AC=BC,E、F分别为PC,PB中点(1)求证 EF‖平面ABC(2)求证 EF⊥PC(3)求三棱锥B-PAC的体积 1.已知在直角三角形ABC中,AB=3,AC=4∠BAC=60°,P是△ABC所在平面外一点,若PA⊥平面ABC,且PA=3,求点P到BC的距离.2.如图,AB是圆O的直径,PA垂直于圆O所在的平面,C为圆O上的任意点(C与A,B不重合).AE⊥PC,AF 如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证求证:BC⊥平面PAC可不可以直接说,因为直径,所以∠ACB=90°.即BC垂直于AC 因为过一点有且只有一条直线与已知平面 如图所示,AB是圆O的直径,PA垂直于园O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC 如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的一点.求证