Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:44:24

Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)
Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)

Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)
1/【(3n-2)(3n+1) 】
=1/3*【1/(3n-2)-1/(3n+1)】
所以Sn=1/3【1-1/4+1/4-1/7+1/7-.+1/(3n-2)-1/(3n+1)】
=1/3【1-1/(3n+1)】
=n/(3n+1)

1/3-1/(9n+3)

问题呢...是化简吗?
Sn=1/1*4 + 1/4*7 + ... +1/(3n-2)(3n+1)
=(1- 1/4)/3+ (1/4 - 1/7)/3 +...+(1/3n-2 - 1/3n+1)/3
=[1- 1/4 + 1/4 - 1/7 +...+1/(3n-2) - 1/(3n+1)]/3
=[1- 1/(3n+1)]/3
=n/(3n+1)

楼上的几个解答都错误理解了题目的意思。