Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:44:24
Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)
Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)
Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)
1/【(3n-2)(3n+1) 】
=1/3*【1/(3n-2)-1/(3n+1)】
所以Sn=1/3【1-1/4+1/4-1/7+1/7-.+1/(3n-2)-1/(3n+1)】
=1/3【1-1/(3n+1)】
=n/(3n+1)
1/3-1/(9n+3)
问题呢...是化简吗?
Sn=1/1*4 + 1/4*7 + ... +1/(3n-2)(3n+1)
=(1- 1/4)/3+ (1/4 - 1/7)/3 +...+(1/3n-2 - 1/3n+1)/3
=[1- 1/4 + 1/4 - 1/7 +...+1/(3n-2) - 1/(3n+1)]/3
=[1- 1/(3n+1)]/3
=n/(3n+1)
楼上的几个解答都错误理解了题目的意思。
Sn=2/2+3/2²+4/2³+····+(n+1)/(2^n) 求Sn.
设Sn=1*4+2*7+.n(3n+1)则Sn=
正数列{bn}前n项和Sn·且Sn=1/2(bn+n/bn)求Sn
求和Sn=1-2 3-4+
Sn=1+ 4/5 + 7/5² +……+ (3n-2)/5^(n-1)求Sn.
设Sn=2+4+6+.+2n,则1/s1+1/s2+.+1/sn=
数列{an}满足Sn+Sn+1=5/3an+1,a1=4求an
Sn求和 Sn=1+2x3+3x9+4x27+...+nx3的n-1次方
sn=1+2+4+...+2^(n-1),求sn
an是等差数列,求lim (Sn+Sn+1)/(Sn+Sn-1)lim (Sn+Sn+1)/(Sn+Sn-1)=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]=(2n²+4n+2)/2n²=1+2/n+1/n²我就想知道第一步怎么来的
Sn=1+2+4+...+2的N次方,求Sn
数列错位相减中sn前得数怎样确定?例如:sn=1/2+1/4+1/8·····+1/(2^n),
求和Sn=1/2+2/4+3/8+…+n/2^n,不明白Sn-1/2Sn是怎样减得不明白Sn-1/2Sn是怎样减得,Sn-1/2Sn=1/2+1/4+1/8+....+1/2^n- n/2^(n+1) 怎么来的?
已知数列{an}的前n项和为Sn=1+2+3+4+…+n,求f(n)= Sn /(n+32)Sn+1的最大值f(n)= Sn /(n+32)Sn+1 Sn为分子...(n+32)Sn+1 为分母...看不出来么?
设数列{an}的前n项和为Sn,已知a1=2,且a1、Sn+1、4Sn成等差数列,(1)求{an}的通项公式(2)、求Sn,并求lim Sn/( t^n) 其中t为正常数Sn+1 中 是 n+1项,不是Sn加上1
·求tn=?Sn=75/4(5^n-1)
已知数列的前n项和为Sn,且an=Sn·Sn-1(n>=2),a1=2/9,则a10=
设Sn=1/2+1/6+1/12+…+1/n(n+1),且Sn*Sn+1=3/4,则n=多少?