证明定义在(a,b)上的任意函数f(x)必能表示为一个非负函数与一个非正函数之和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:50:43
证明定义在(a,b)上的任意函数f(x)必能表示为一个非负函数与一个非正函数之和
证明定义在(a,b)上的任意函数f(x)必能表示为一个非负函数与一个非正函数之和
证明定义在(a,b)上的任意函数f(x)必能表示为一个非负函数与一个非正函数之和
f(x)=g(x)+h(x),其中g(x)=[|f(x)|+f(x)]/2,h(x)=[f(x)-|f(x)|]/2,
显然g(x)>=0是非负函数,h(x)<=0是非正函数.
证明定义在(a,b)上的任意函数f(x)必能表示为一个非负函数与一个非正函数之和
定义在R上函数f(x) f(a+b)=f(a)+f(b) 证明函数为奇函数
定义在正整数集上的函数f(x),对于任意a,b∈N*,f(a+b)=f(a)+f(b)恒成立,
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,f(a+b)=f(a)f(b).(1),求证,f(0)=1;(2),求证,对任意的x属于R,恒有f(x)>0;(3),证明:f(x)是R上的增函数;(4),若f(x)*f(2x-x平方)
设f(x)是定义在(-a,a)上 的任意函数证明g(x)=f(X)+f(-x).是偶函数,h(x)=f(X)-f(-x)是奇函数x属于(-a a)求求了;啊
f(x)为定义在R上的增函数,证明a+b≥0与f(a)+f(b)≥f(-a)+f(-b)可以互相推导.
定义在R上的函数y=fx f0不等于0 当x>0时,fx>1,且对任意的a,b属于R,都有f(a+b定义在R上的函数y=fx; f0不等于0; 当x>0时,fx>1,且对任意的a,b属于R,都有f(a+b)=f a+f b.证明:fx是R上增函数. 若f
已知函数y=f(x)在R上有……已知函数y=f(x)在R上有定义,当x>0时,f(x)>1,且对任意实数a,b,都有 f(a+b)=f(a)*f(b)恒成立.(1)求证:f(0)=1;(2)若f(x)*f(2x-x^2)>1,求x的取值范围;(3)证明:f(x)是R上的增函数.注意
为什么 定义在R上的函数y=f(x)对定义域内任意x有f(x+a)=f(x-b),则y=f(x)是以T=a+b为周期的函数
已知定义在R上的函数f(x)满足:对于任意实数a,b,总有f(a+b)=f(a)+f(b).(1)求f(0);(2)判断f(x)的奇偶性.(3)若x>0时,f(x)>0.判断f(x)的单调性.并给出证明.
中难度的函数题,定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a.b€R,有f(a+b)=f(a)f(b)(1)求证f(0)=1(2)求证对任意的x€R,恒有f(x)>0(3)证明f(x)是R的增函数
定义在R上的函数y=f(x),当x〉0时,f(x)〉1,且对任意的a,b属于R,有f(a+b)=f(a)f(b),(1)求f(0)=1;(2)求证:对任意的x属于R,恒有f(x)〉0(3)证明:f(x)是R上的增函数;(4)若f
设f(x)是定义在R上的增函数,试利用定义证明函数F(x)=f(x)-f(a-x)在R上是增函数
设y=f(x)是定义在区间(a,b)(b>a)上的函数,若对任意x1,x2属于(a,b),都有|(x1)-f(x2)|<=|x1-x2|,则称y=f(x)是区间(a,b)上的平缓函数,1.试证明对任意k属于R,f(x)=x^2+kx+14都不是区间(-1,1)上的平缓函数,2.若f(x)
已知f(x)是定义在R上的不恒为0的函数,且对于任意的实数a、b,满足f(ab)=af(b)+bf(a).(1)判断函数f(x)在R上是否是单调函数为什么?(2)判断f(x)的奇偶性,并证明你的判断:(3)
已知f(x)是定义在R上的不恒为0的函数,且对任意的实数a,b满足f(ab)=af(b)+bf(a).①判断函数f(x)在R上是否是单调函数,为什么?判断f(x)的奇偶性,并证明你的结论.
定义在R上的函数f(x)满足对于任意实数a、b总有f(a+b)=f(a)f(b)当x>0时0<f(x)<1且f(1)=1/2①用定义法证明函数发(x)在(-∞,∞)上位减函数②解关于x的不等式f(kx²-5kx+6k)f
函数的奇偶性已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,都有f(ab)=af(b)+bf(a)(1)求f(0)、f(1)的值(2)判断函数f(x)的奇偶性,并加以证明