柯西不等式的证明过程,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 03:56:11
柯西不等式的证明过程,
柯西不等式的证明过程,
柯西不等式的证明过程,
二维形式的证明 (a^2+b^2)(c^2+d^2) (a,b,c,d∈R)
=a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^2
=a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2
=(ac+bd)^2+(ad-bc)^2
≥(ac+bd)^2,等号在且仅在ad-bc=0即ad=bc时成立.
三角形式的证明 √(a^2+b^2)+√(c^2+d^2)≥√[(a+c)^2+(b+d)^2]
证明:[√(a^2+b^2)+√(c^2+d^2)]^2=a^2+b^2+c^2+d^2+2·√(a^2+b^2)·√(c^2+d^2)
≥a^2+b^2+c^2+d^2+2|ac+bd|
≥a^2+b^2+c^2+d^2+2(ac+bd)
=a^2+2ac+c^2+b^2+2bd+d^2
=(a+c)^2+(b+d)^2
两边开根号即得 √(a^2+b^2)+√(c^2+d^2)≥√[(a+c)^2+(b+d)^2]
注:| |表示绝对值.
向量形式的证明 令m=(a1,a2,…,an),n=(b1,b2,…,bn)
m·n=a1b1+a2b2+…+anbn=|m||n|cos=√(a1+a2+…+an) ×√(b1+b2+…+bn) ×cos
∵cos≤1
∴a1b1+a2b2+…+anbn≤√(a1+a2+…+an) ×√(b1+b2+…+bn)
注:“√”表示平方根.
一般形式的证明 (∑(ai^2))(∑(bi^2)) ≥ (∑ai·bi) ^2
证明:
等式左边=(ai·bj+aj·bi)+.共n2 /2项
等式右边=(ai·bi)·(aj·bj)+(aj·bj)·(ai·bi)+.共n2 /2项
用均值不等式容易证明 等式左边≥等式右边 得证
推广形式的证明
推广形式为 (x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n (*)
证明如下
记A1=x1+y1+…,A2=x2+y2+…,….
由平均值不等式得
(1/n)(x1/A1+x2/A2+…+xn/An)≥[x1*x2*…*xn/(A1*A2*…*An)]^(1/n)=[(Πx)/(A1*A2*…*An)]^(1/n)
(1/n)(y1/A1+y2/A2+…+yn/An)≥[y1*y2*…*yn/(A1*A2*…*An)]^(1/n)=[(Πy)/(A1*A2*…*An)]^(1/n)
……
上述m个不等式叠加得
1≥[(Πx)/(A1*A2*…*An)]^(1/n)+[(Πy)/(A1*A2*…*An)]^(1/n)+…
即(A1*A2*…*An)^(1/n)≥(Πx)^(1/n)+(Πy)^(1/n)+…
即 A1*A2*…*An≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n
即(x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n
因此,不等式(*)成立.
(注:推广形式即为卡尔松不等式)
柯西不等式有很多,不是很多,拓麻的,几乎都是他的。