1/(x+x^2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:53:33
1/(x+x^2)dx
1/(x+x^2)dx
1/(x+x^2)dx
∫1/(x+x^2)dx
=∫1/xdx -∫1/(x+1)dx
=ln|x|-ln|x+1| +C
1/x+x^2=1/(x+1)x=1/x-1/1+x
所以原式等于lnx/1+x +C
∫1/(x+x^2)dx
=∫[1/x-1/(x+1)]dx
=∫1/xdx -∫1/(x+1)dx
=ln|x|-ln|x+1| +C
∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+c
∫1/(x+x^2)dx
=∫1/[(x+1/2)^2-1/4)]d(x+1/2)
=∫1/√(x^2-a^2) dx=|In【x+1/2+√{(x+1/2)^2-1/4}】|+c
1/(x+x^2)dx
∫[dx/(e^x(1+e^2x)]dx
∫1+2x/x(1+x)*dx∫1+2x/x(1+x) * dx
∫(x-1)^2dx,
∫x^1/2dx
x^2dx/(1-x^2)^2
微分方程.(1+x)^2/ (1-x)dx .
∫1/x^2+x+1dx
∫1/(x^2+x+1)dx
∫dx/x^2(1-x^2)
∫dx/x^2(1+x^2)
∫X^2/1-x^2 dx.
dx/x^2(根号1+x^2)
∫X^2/1-x^2 dx.
dx/(x+2)(2x+1)
∫ (x+arctanx)/(1+x^2) dx
不定积分dx/x(根号1-x^2)
∫(x^2+1/x^4)dx