在1~2000这2000个自然数中,能被2或3或5整除的数共有多少个
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:51:58
在1~2000这2000个自然数中,能被2或3或5整除的数共有多少个
在1~2000这2000个自然数中,能被2或3或5整除的数共有多少个
在1~2000这2000个自然数中,能被2或3或5整除的数共有多少个
结果:共1466个!
因为能被2整除的数:2000÷2=1000个;能被3整除的数:2000÷3=666个;
能被5整除的数:2000÷5=400个.
这样看来,好像能被2、3、5整除的数一共有:1000+666+400=2066个.
但是,在这些数中,有一些数重复计算了:比如6这个数,在被2整除的数中算了一次,又在被3整除的数中算了一次,所以,这样的数我们要找出来,就从最小的6开始,找6的倍数,12、18、24……
所以,既能被2整除,又能被3整除的数:2000÷6=333个;
同理:既能被2整除,又能被5整除的数:2000÷10=200个;
同上:既能被3整除,又能被5整除的数:2000÷15=133个.
这些数都是重复计算了的,所以,我们要从刚才算的总数里面减掉:2066-(333+200+133)= 1400个.
到这里为止,还没完,因为在这些数中,我们又多算了 既能被2整除,又能被3整除,还能被5整除的数,最小的比如30
30这个数多减了一次,当然不光是30,还有所有30的倍数,所以,这些数也得找出来:2000÷30=66个
这些都是多减了的.
所以应该加上,因此,既能被2整除,或能被3整除,或能被5整除的数一共有:1400+66=1466个!
结果:共1466个!
因为能被2整除的数:2000÷2=1000个;能被3整除的数:2000÷3=666个;
能被5整除的数:2000÷5=400个。
这样看来,好像能被2、3、5整除的数一共有:1000+666+400=2066个。
所以,既能被2整除,又能被3整除的数:2000÷6=333个;
同理:既能被2整除,又能被5整除的数:2000÷10=...
全部展开
结果:共1466个!
因为能被2整除的数:2000÷2=1000个;能被3整除的数:2000÷3=666个;
能被5整除的数:2000÷5=400个。
这样看来,好像能被2、3、5整除的数一共有:1000+666+400=2066个。
所以,既能被2整除,又能被3整除的数:2000÷6=333个;
同理:既能被2整除,又能被5整除的数:2000÷10=200个;
同上:既能被3整除,又能被5整除的数:2000÷15=133个。
这些数都是重复计算了的,所以,我们要从刚才算的总数里面减掉:2066-(333+200+133)= 1400个。
还没完,因为在这些数中,我们又多算了 既能被2整除,又能被3整除,还能被5整除的数,最小的比如30
30这个数多减了一次,当然不光是30,还有所有30的倍数,所以,这些数也得找出来:2000÷30=66个
这些都是多减了的。
所以应该加上,因此,既能被2整除,或能被3整除,或能被5整除的数一共有:1400+66=1466个
收起