求证:tanxsinx/(tanx-sinx)=(tanx+sinx)/(tanxsinx)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:48:24

求证:tanxsinx/(tanx-sinx)=(tanx+sinx)/(tanxsinx)
求证:tanxsinx/(tanx-sinx)=(tanx+sinx)/(tanxsinx)

求证:tanxsinx/(tanx-sinx)=(tanx+sinx)/(tanxsinx)
两边同时乘以(tan(x)sin(x))/(tan(x)+sin(x)),可得原命题即证明
tan(x)tan(x)sin(x)sin(x)/( tan(x)tan(x)-sin(x)sin(x))=1
tan(x)tan(x)sin(x)sin(x)/( tan(x)tan(x)-sin(x)sin(x))分子分母同时除以
sin(x)sin(x)可得:
tan(x)tan(x)/( 1/(cos(x)cos(x))-1)=tan(x)tan(x)/tan(x)tan(x)=1=右边,证毕