证明:若函数fx在[a,b]上连续,且对任何x∈[a,b],存在相应的y∈[a,b],使得|f(y)|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:48:05

证明:若函数fx在[a,b]上连续,且对任何x∈[a,b],存在相应的y∈[a,b],使得|f(y)|
证明:若函数fx在[a,b]上连续,且对任何x∈[a,b],存在相应的y∈[a,b],使得|f(y)|

证明:若函数fx在[a,b]上连续,且对任何x∈[a,b],存在相应的y∈[a,b],使得|f(y)|
这里不妨用反证法,首先你可以知道连续函数是有界的,假设不存在ζ∈[a,b],使得f(ζ)=0,那么要么有f(x)>0对任意x∈[a,b]恒成立,要么f(x)0对任意x∈[a,b]恒成立(x0根据结论,必存在min1∈[a,b],使得f(min)=2f(min)对于min1,可以继续找到min2使得f(min2)>=2f(min1),这样连续找下去,记第k个自变量值为mink,则f(mink)>=f(min)*2^k,
f(min)>0,那么当k趋于无穷时显然f(mink)也趋于无穷,这就推出函数无界,和函数f在闭区间[a,b]连续矛盾,因此,假设不成立,原命题为真.
敲了这么多字,数学辅导团为您全力解答各种数学问题.

证明:若函数fx在[a,b]上连续,且对任何x∈[a,b],存在相应的y∈[a,b],使得|f(y)| 设函数fx在(a,b]上连续,且f(a+0)存在.证明f(x)在(a,b]内有界. 定义在R上的函数y=fx f0不等于0 当x>0时,fx>1,且对任意的a,b属于R,都有f(a+b定义在R上的函数y=fx; f0不等于0; 当x>0时,fx>1,且对任意的a,b属于R,都有f(a+b)=f a+f b.证明:fx是R上增函数. 若f 若函数fx在[a,b]上连续,且f(a)b,试证:在(a,b)内至少有一点ζ,使f(ζ)=ζ 证明:有f(x+y)=fx+fy且fx在0处连续,则函数fx在R上连续,且fx=ax,其中a=f(1)如何证明fx=ax,且a=f1? 急求. 已知函数fx是定义在【-1,1】上的奇函数,若a,b∈[-1,1]且a+b≠ 0时,有fa+fb/a+b>0 1.1.证明fx在【-1,1】 设函数f 在 [a,b]上连续,证明:对任一,0 若函数f(x)在[a,b]上连续且有反函数,问f(x)在[a,b]上是否单调并证明?急 若函数fx在[a,b]上连续,AB为两个任意正数,试证:对任意两点X1,X2∈[a,b],至少存在一点ζ∈[a,b],使Af(x1)+Bf(x2)=(A+B)f(ζ) 设函数y=f(x)在[a,b]上连续且单调,证明其反函数在相应区间上也连续且单调 设函数g在[a,b]上连续,且a 设函数g在[a,b]上连续,且 a fx在(a,b)一致连续,证明fx左极限存在 若函数f(x)在[a,b]上连续,且f(x)>=0,且f(x)dx在[a,b]上的积分等于0,求证明在[a,b]上,f(x)恒等于0 函数f(x)在闭区间[a,b]上严格单调且连续,f(a)=A,f(b)=B,证明f([a,b])=(A,B) 如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少 证明:若函数f x 在a连续,且f a 0,对任意X:a-u 若函数fx在【a,b】上有二阶导数,且f‘x=f’b=0,证明在(a,b)内至少存在一点