lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} 求极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:54:47
lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} 求极限
lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} 求极限
lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} 求极限
利用拆项法:数列的通项公式 1/[(2n-1)*(2n+1)] 可以拆项为 (1/2)*[1/(2n-1)-1/(2n+1)] 利用这个拆项法将极限化为 lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} = lim(n→∝)1/2{(1- 1/3)+(1/3-1/5)+...1/(2n-1)-1/(2n+1)]} = lim(n→∝)1/2{1-1/(2n+1)} = 1/2
求lim n→∞ (1+2/n)^n+3
lim(n→∞)[1-(2n/n+3)]
lim(n→∞)(2n-1/n+3)
lim (n!+(n-1)!+(n-2)!+(N-3)!+⋯..+2!+1)/n!其中n→∞
lim(n+3)(4-n)/(n-1)(3-2n)
lim(n^3+n)/(n^4-3n^2+1)
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
lim(2^n+3^n)^1
(n趋向无穷)
lim(n→∞)[1/(3n+1)+1/(3n+2)+~1/(3n+n)]
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim[1^n+2^n+3^n]^(1/n)等于多少n→无穷
计算lim(n→∞)(1^n+2^n+3^n)^(1/n)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim(n→∞)(3n^3-2n+1)/n^3+n^2 快
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
用数列极限证明lim(n→∞)(n^-2)/(n^+n+1)=1中证明如下:lim(n→∞)3n+1/5n-4
证明LIM(1-3n/1)=1 n→无穷大RT是LIM(1-1/3n)=1
求1.lim(3n-(3n^2+2n)/(n-1)) 2.lim(8+1/(n+1)) 3.lim根号n(根号(n+1)-根号(n-3))