已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求...已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求证:f
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:27:57
已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求...已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求证:f
已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求...
已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求证:f(x)-g(x)=2有唯一解---看过你说的,
已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求...已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求证:f
求f(x)的导,把0和1代入求导式中,算个a的范围;求g(x)的导,同样的步骤求出a的范围,然后就由a的范围了.F(x)=f(x)-g(x)-2.求导,代入a的值,应该可以算出F是单调函数,所以只有一个F(x)=0,计算就不整了,麻烦
已知函数f(x)=x2+2x+alnx.若函数f(x)在区间(0,1)是单调函数,求实数a的取
已知函数f(x)=x2-alnx(a属于R)求f(x)在【1,e】上的最小值
已知函数f(x)=x2 alnx若gx=fx 2已知函数f(x)=x2+alnx若gx=fx+2/x在[1,4]上是减函数,求a的范围
已知函数f(x)=x2+alnx,若函数f(x)在【1,4】上是减函数,求实数a的取值范围
已知函数f(x)=x2+alnx,当a=-2时,求函数f(x)的单调区间
已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求...已知函数f(x)=-x2-alnx在(0,1)上为减函数,g(x)=x-a根号x,在中括号1,2上为增函数.(1)略(2)求证:f
已知函数f(x)=alnx+x2 (x>0,a为实常数)求函数f(x)在[1,e]上的最小值及相应的x值如果可以,请附图像,
已知函数f(x)=x^2 g(x)=2alnx .已知函数f(x)=x^2 g(x)=2alnx①若不等式2f'(x)-g(x)>0在x属于【e,e^e】上有解,求实数a的取值范围.②若a=1,m≤1,对于任意的x1>x2>0,不等式m【f(x1)-f(x2)】>x1g(x1)-x2g(x2
已知函数f(x)=x2-2(a+1)x+2alnx求f(x)单调区间
已知函数f(x)=alnx+x2(a为实常数).(1)若a=-2,求函数f(x)的单调区间已知函数f(x)=alnx+x2(a为实常数).(1)若a=-2,求函数f(x)的单调区间; (2)若-5≤a≤0,求函数f(x)在[,√2/2,1]上的最小值及相应的x值;(3)若
已知函数f(x)=x2+(2a-1)x-alnx,g(x)=-4/x-alnx,(a∈R)已知函数f(x)=x2+(2a-1)x-alnx,g(x)=-4/x-alnx(a∈R).(1)a<0时,求f(x)的极小值;(2)若函数y=f(x)与y=g(x)的图象在x∈[1,3]上有两
已知函数f(x)=fx=x2+(2-a)-alnx. (I)讨论f(x)的单调性;
已知函数f(x)=2/x+alnx,a属于R 求函数在区间(0,e]上的最小值.
100分 已知函数f(x)=x2+x/2+alnx(x>0),f(x)的导函数是f'(x),对任意两个已知函数f(x)=x2+ +alnx(x>0),f(x)的导函数是f'(x),对任意两个不相等的正数x1,x2,证明:(1)当a≤0时,1/2f(x1)+1/2f(x2) >f(1/2x1+
已知函数f(x)=x2-2ax-2alnx,g(x)=ln2x+2a2,其中x>0,a属于R,若f(x)在区间(2,正无穷上单调递增求a的取值范围
已知函数f(x)=x²-2alnx求最值
已知函数f(x)=2x-alnx.设若a
已知函数f(x) =x^2+alnx.