已知函数f(x)=x-1/x,g(x)=1/x-x-m,若对任意x1属于【1,3】,存在x2属于【-2,-1】,使得f(x1)≥g(x2),则实数m的取值范围是-----

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:37:47

已知函数f(x)=x-1/x,g(x)=1/x-x-m,若对任意x1属于【1,3】,存在x2属于【-2,-1】,使得f(x1)≥g(x2),则实数m的取值范围是-----
已知函数f(x)=x-1/x,g(x)=1/x-x-m,若对任意x1属于【1,3】,存在x2属于【-2,-1】,使得f(x1)≥g(x2),则实数m的取值范围是-----

已知函数f(x)=x-1/x,g(x)=1/x-x-m,若对任意x1属于【1,3】,存在x2属于【-2,-1】,使得f(x1)≥g(x2),则实数m的取值范围是-----
你好 关键是对任意的x1 x2不等式成立 因为是两个独立变量 各自函数能同时取极值 所以只需特殊情况f(x)min≥g(x)max即可
注意到f(x) x∈【1,3】中单调递增 g(x) x∈【-2,-1】单调递减
所以f(1)=0≥g(-2)=3/2-m
解得m

首先确定f(x)和g(x)的单调性
1:设X1,X2属于【1,3】,且x1>x2
根据单调性定义证明f(x1)>f(x2),即函数f(x)在【1,3】上是单调递增
2:同理证明g(x)在【-2,-1】上是单调递减
3:那么我们只要证明f(x)在区间【1,3】上的最小值,(即f(1)=0)大于g(x)在区间【-2,-1】上的最大值(即g(-2)=3/2-m...

全部展开

首先确定f(x)和g(x)的单调性
1:设X1,X2属于【1,3】,且x1>x2
根据单调性定义证明f(x1)>f(x2),即函数f(x)在【1,3】上是单调递增
2:同理证明g(x)在【-2,-1】上是单调递减
3:那么我们只要证明f(x)在区间【1,3】上的最小值,(即f(1)=0)大于g(x)在区间【-2,-1】上的最大值(即g(-2)=3/2-m)
可列不等式0>=3/2-m,得m<=3/2

收起

复合函数已知分段函数f(x) g(x)求f(g(x))已知f(x)=1 (当-1 已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2 已知函数f(x)=loga(x+1),g(x)=loga(1-x).求f(x)+g(x)定义域;判断f(x)+g(x)的奇偶性 已知函数f(x)=2x-a,g(x)=x^2+1.G(x)=f(x)/g(x),H(x)=f(x)·g(x)(1) 当x∈[-1,1],求使G(x) 已知函数f(x)=x^3,g(x)=x + x^(1/2) .求函数h(x)=f(x)-g(x)的零点个数,说明理由 已知函数f(x)=x+1,g(x)=2x-1,则f(g(x))等于 已知函数f(x)=xlnx,g(x)=2x-3.(1)证明f(x)>g(x). 已知函数f(x)是奇函数,g(x)是偶函,且f(x)-g(x) =1/(x+1),则f(x)=?g(x)=? 已知函数f(x)=3x²+6x g(x)=x+1 求f[f(x)]和g[f(x)]的解析式 已知函数f(x)=2^x,判断g(x)=[f(x)-1]/[f(x)+1]的奇偶性 已知函数f(x)=x^+ax,g(x)=2^x-a,且1/2 已知函数f(x)=x²+2x,设g(x)=(1/x)·f(x-1),求函数g(x)的表达式及定义域. 已知函数f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=x²-x+2,求f(x),g(x)的解析式.由题意知f(x)=-f(-x)(奇函数的性质)g(x)=g(-x)(偶函数的性质)f(x)+g(x)=x^2-x+2.(1)f(-x)+g(-x)=(-x)^2-(-x)+2.(2)(1)+(2)得f(x)+f(-x)+g(x)+g 函数 [单调区间,最小值】已知函数 f(x)=x方-2x ,g(x)=x方-2x x属于 [2 4](1)f(x) g(x)的单调区间(2)f(x) g(x)的最小值 已知函数f(x)=2^x-1,g(x)=1-x^2,构造函数F(x),定义如下,当|f(x)|大于等于g(x)时,F(x)=|f(x)|,当|f(x)| 已知函数f(x)=1/(x²+1),g(x)=f(1/x)求证f(x)+g(x)=1 x≠0 已知函数f(x)=-1/3x³+x²,g(x)=f(x)+f´(x),讨论g(x)的单调性 已知函数f(x)=x的平方减2x(1)求f(x),g(x)的单调区间 (2)求f(x),g(x)的最小值