设A,B为n维列向量,则n阶矩阵c=ab^t的秩为r(a)= ,为什么不是等于n,答案是0或1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:36:54
设A,B为n维列向量,则n阶矩阵c=ab^t的秩为r(a)= ,为什么不是等于n,答案是0或1
设A,B为n维列向量,则n阶矩阵c=ab^t的秩为r(a)= ,为什么不是等于n,答案是0或1
设A,B为n维列向量,则n阶矩阵c=ab^t的秩为r(a)= ,为什么不是等于n,答案是0或1
设A=(a1,a2,.an)^T,B=(b1,b2,.bn)^T
则AB^T=a1b1 a1b2 a1b3 .a1bn
a2b1 a2b2 a2b3 .a2bn
..
anb1 anb2 anb3 .anbn
注意任何一个2*2的子矩阵 aibj aibk
asbj asbk
其行列式都为0 所以任何一个k(大于等于2)级子式均等于0
所以AB^T 的秩
设A,B为n维列向量,则n阶矩阵c=ab^t的秩为r(a)= ,为什么不是等于n,答案是0或1
老师请教一下2013年考研数学的一道题设ABC均为N阶矩阵,若AB=C,且B可逆,则()A.矩阵C的行向量与矩阵A的行向量等价B.矩阵C的列向量与矩阵A的列向量等价C.矩阵C的行向量与矩阵B的行向量等价D.
设A和B分别是n*m型和m*n型矩阵,C=AB为可逆阵,证明:B的列向量组线性无关
设A是m*n矩阵,且列向量组线性无关,B是n阶矩阵,满足AB=A,则r(B)等于多少
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:任意n维向量B都有//AB//=//B//
设:A为n*m型矩阵,B为m*n型矩阵,I为n阶单位矩阵,若AB=I,证明B的列向量组线性无关.
A为m×n阶矩阵,B为n×k阶矩阵,c=AB为m×k阶矩阵,若r(A)=n,r(B)=k,证明:c的列向量线性无关
设矩阵Am*n的秩r(A)=m〈n,B为n阶方阵,则A、当秩r(B)=n时有秩r(AB)=m B、Am*n的任意m个列向量均线性无关 C、!AtA!不等于0D、Am*n的任意m阶子式均不为零
求解几道线性代数题目(1)设A,B都是n阶对称矩阵,则下列矩阵中()不是对称矩阵.(A)A^T B ,AB C, kA(k为常数) D A+B (2)设A是4×3矩阵,B是3×4矩阵,下列说法正确的是()A, AB的列向量组线性
设A B分别为m×n,n×m矩阵,n>m,AB=Em,证明B的m个列向量线性无关
设A为n阶矩阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆
看看这个线性代数证明题咋证明啊?设m*n阶矩阵A的秩为m,n*(n-m)阶矩阵B的秩为n-m,又AB不=0,向量(阿尔法)是齐次方程组Ax=0的一个解向量,证明:存在唯一的一个n-m维列向量(贝塔)使(阿尔法
设a是n维列向量,A为n阶正交矩阵,证明||Aa||=|a|
设A为m*n阶矩阵,对任何的m维列向量b,AX=b有解,则AT*A可逆为何不对
设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
A为n维正交矩阵,a,b为n维列向量,则Aa·Ab=a·b.为什么?
设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量(2)证明矩阵P为可逆矩阵(3)求P^(-1)CP
设A为n阶正交矩阵;a,b为两个n维的向量,求证1.(Aa,Ab)=(a,b) 2.||Aa||=||A||