A是线性空间V的一个线性变换,试证如果α,Aα,…A∧k-1α线性无关,而α,Aα,…A∧kα线性相关,那么L(α,Aα,…A∧k-1α)是A的一个不变子空间且是包含α的最小的A-子空间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:51:38

A是线性空间V的一个线性变换,试证如果α,Aα,…A∧k-1α线性无关,而α,Aα,…A∧kα线性相关,那么L(α,Aα,…A∧k-1α)是A的一个不变子空间且是包含α的最小的A-子空间
A是线性空间V的一个线性变换,试证如果α,Aα,…A∧k-1α线性无关,而α,Aα,…A∧kα线性相关,那么L(α,Aα,…A∧k-1α)是A的一个不变子空间
且是包含α的最小的A-子空间

A是线性空间V的一个线性变换,试证如果α,Aα,…A∧k-1α线性无关,而α,Aα,…A∧kα线性相关,那么L(α,Aα,…A∧k-1α)是A的一个不变子空间且是包含α的最小的A-子空间
将A作用于L(α,Aα,…A∧k-1α)的基得到Aα,…A∧kα,由于α,Aα,…A∧kα线性相关,所以Aα,…A∧kα均能够由α,Aα,…A∧k-1α线性表出,所以是A-不变子空间;
假设U为A-不变子空间且包含α,那么也包含Aα,A^2α,……,A^kα,所以U包含L(α,Aα,…A∧k-1α),也就是说L(α,Aα,…A∧k-1α)是包含α的最小的A-子空间

什么 东西

A是线性空间V的一个线性变换,试证如果α,Aα,…A∧k-1α线性无关,而α,Aα,…A∧kα线性相关,那么L(α,Aα,…A∧k-1α)是A的一个不变子空间且是包含α的最小的A-子空间 线性空间,线性变换,特征值与特征向量设V是复数域上的n维线性空间,s,t是V的线性变换,且st=ts.求证:(1)如果λ0是s的特征值,那么λ0的特征子空间V(λ0)是t的不变子空间;(2)s,t至少有一个公 设W是线性空间V的一个子空间,A是V上的线性变换,W是A的不变子空间的条件是? 设α是n维线性空间 V的线性变换,那么 α是双射 α是单位变换(×) 设A为数域P上的n维线性空间V的线性变换,且A^2=A证明:(1)V=A的核加A的值域为直和(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA 证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关于通常的线性变换的加法与数量乘积是F上的线性空间. 设V是有理数域上的线性空间,V的维数是n,A与B是V的线性变换,B可对角化,AB-BA=A证:存在正整数m,使得A的m次幂是零变换 一个关于矩阵理论的证明题设V是n维线性空间.证明:V中任意线性变换必可表为一个可逆线性变换与一个幂等变换的乘积. v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T 设V为数域P上的线性空间,A是V上的变换,任意α,β∈v,任意k∈P,A应满足哪些条件才是线性变换? 设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关 设A是线性空间V的一个线性变换,证明下列两个条件是等价的:A把V中某一线性无关的向量变成一组线性相关的第二个条件是A把V中的某个非零向量变成零向量 高等代数线性变换答案有问题设A是有限维线性空间V的线性变换,W是V的子空间,AW表示由W中向量的像组成的子空间,证明:dim(AW)+dim(A∧-1(0)∩W)=dim(W);答案说显然A也是W上的线性变换,怎么可能,W也 设T为线性空间V的一个线性变换,且T的平方等于T,证明T的特征值只能是1或0 T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充要条件是T是数乘变换充分性我知道,主要是必要性怎么证 谁能给证明一下,矩阵分析的问题设T是线性空间V的线性变换.证明K={a∈V|Ta=0}是V的子空间 高等代数 A,B是线性空间V上的线性变换,且A^2=A,B^2=B.若KerA=KerB,则AB=高等代数A,B是线性空间V上的线性变换,且A^2=A,B^2=B.若KerA=KerB,则AB=A,BA=B 设σ是线性空间V上的可逆线性变换,证明:(1)σ的特征值一定不为零.