如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B(2)在曲线BOA上任取异于A,B的点C,连接AC并延长交曲线C2于D,设P为三角形BCD重心轨迹上的任意一点,过P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 16:32:00

如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B(2)在曲线BOA上任取异于A,B的点C,连接AC并延长交曲线C2于D,设P为三角形BCD重心轨迹上的任意一点,过P
如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B
(2)在曲线BOA上任取异于A,B的点C,连接AC并延长交曲线C2于D,设P为三角形BCD重心轨迹上的任意一点,过P作曲线C1的两条切线,切点分别为M,N.求线段MN的长度取值范围

如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B(2)在曲线BOA上任取异于A,B的点C,连接AC并延长交曲线C2于D,设P为三角形BCD重心轨迹上的任意一点,过P
由定义易得到两条曲线的方程的求导结果为y'=2x与y'=-2(x-2) 设直线l与曲线C1相切于点(x0,x0^2),则直线l的方程为y-x0^2=2x0(x-xo),令

如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B(2)在曲线BOA上任取异于A,B的点C,连接AC并延长交曲线C2于D,设P为三角形BCD重心轨迹上的任意一点,过P 数学题 初三 马上中考了,帮帮我吧!如图,已知抛物线c1:y=三分之二x2+三分之十六x+8与抛物线c2关于y轴对称,抛物线c2与y轴交点c,与x轴交于点a和点b1.求抛物线c2的解析式2.点p为对称轴右侧抛物线 如图1,点A为抛物线C1:y= 1 2 x2-2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另如图1,点A为抛物线C1:y=1/2 x2-2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如 已知双曲线C1:x2/a2-y2/b2=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐进线的距离为2,则抛物线C2 的方程为()A、x2=8(根号下3)/3y B、x2=16(根号下3)/3y C、x2=8y D、x2=16y 已知抛物线c1,y=x2-4x+3沿x轴得到抛物线c2,设C1的顶点为D,C2的顶点为E,抛物线C2与C1交于M,若三角形MDE为等腰直角三角形,求C1平移的距离.题没有图,真的没有,. 已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于 已知抛物线C1:y=2x^2与抛物线C2关于y=-x对称,则抛物线C2的准线方程为 已知抛物线C1:Y=3x2,另一条抛物线C2的顶点为(2,5),且形状,大小与抛物线C1相同答案是y=3x2+12x+17和y=-3x2+12x-7,为什么我算出来的是y=3x2+12x+17 y=-3x2+12x+41? 已知:抛物线C1 C2关于x轴对称,抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1, 已知抛物线C1:y=x2-4x-3,求关于x轴对称的抛物线C2的解析式 已知抛物线y=x2+ax-2的对称轴方程为x=1,此抛物线的顶点坐标为? 已知抛物线y=x2+mx-3的对称轴方程为x=2,此抛物线的顶点坐标为? 如图,已知抛物线C1:y=2/3x的平方+16/3x+8与抛物线C2关于y轴对称,求抛物线C2的解析式 已知抛物线C1 y=(x-2)2+3,若抛物线C2与抛物线C1关于y轴对称,则抛物线C2解析式为 若抛物线C3与抛物线C1关于x轴对称,则C3的解析式为 如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于 点B、C,与y 轴相交于点E如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1 已知两个圆C1、C2的方程分别为C1:x2+y2+4x-6y+5=0,C2:x2+y2-6x+4y-5=0,则C1、C2的公切线有几条?Rt,3Q 抛物线x2=2y的准线方程为? 如图,已知抛物线C1的解析式为y=-x^2+2x+8,图像与y轴交于D点,并且顶点A在双曲线上.若开口向上的抛物线C2与C1的形状、大小完全相同,并且C2的顶点P始终在C1上,证明:抛物线C2一定经过A点