抛物线y^2=ax(a≠0)的准线与x轴交于点P,直线l经过点P,且与抛物线有公共点,则直线l的倾斜角的取值范围是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:35:29

抛物线y^2=ax(a≠0)的准线与x轴交于点P,直线l经过点P,且与抛物线有公共点,则直线l的倾斜角的取值范围是?
抛物线y^2=ax(a≠0)的准线与x轴交于点P,直线l经过点P,且与抛物线有公共点,则直线l的倾斜角的取值范围是?

抛物线y^2=ax(a≠0)的准线与x轴交于点P,直线l经过点P,且与抛物线有公共点,则直线l的倾斜角的取值范围是?
从题目中可以看到,点P的坐标为(-a/4,0)
既然直线l过点P,我们可以假设该直线的表达式为:y=k(x+a/4),k为该直线的斜率;由于题目要求该直线必须与抛物线有交点,我们可以试着画一个图---先画出抛物线,然后找到P点,从P点向抛物线引直线,这条直线即为直线l.
以P为基础点,向抛物线引两条直线L0,L1,他们分别与抛物线相切于点M,点N(假设点M在X轴上方),我们只要保证斜率k的范围小于或者等于L0的斜率k0,且大于L1或者等于的斜率k1,即可保证直线l与抛物线必有公共点
联立下列方程:
y=k(x+a/4)
y²=ax
得:16k²x²+8a(k²-2)x+a²k²=0.(※)
由于L0,L1与抛物线相切,即表示※的判别式为0,即:
△=64a²(k²-2)²-4×16k²×a²k²=0
解得:k²=1,即k=±1
于是有:k0=1,k1=-1
根据前面的分析,只要保证k≤1且k≥-1即可保证直线l与抛物线必有公共点,那么可知k的取值范围为:-1≤k≤1
即倾斜角的范围为:[0,π/4]∪[3π/4,π)

设l:x=ty-a/4,与抛物线联立得
y^2-aty+a^2/4=0
判别式>=0解得
|t|>=1,所以斜率的范围为|k|<=1,
所以倾斜角的范围为[0,π/4]并上[3π/4,π)

说下方法吧。设直线y=k(x-a/4),与抛物线联立。得到关于x的二次方程,令b^2-4ac为0,可求出K的两个值。两个值互为相反数,那么K最小最大就求出来了。

抛物线y^2=ax(a≠0)的准线与x轴交于点P,直线l经过点P,且与抛物线有公共点,则直线l的倾斜角的取值范围是? 已知圆X^2+Y^2+6X-7=0与抛物线Y^2=2ax的准线相切,求实数a的值 抛物线y^2=ax(a≠0)的准线方程是 抛物线y^2=ax的准线方程为x=-1,则a=? 抛物线的方程为y=ax^2,试求抛物线的焦点坐标抛物线的方程为y=ax^2(a不等于0),试求抛物线的焦点坐标与准线方程 抛物线y^2=ax(a不等于0)的焦点到准线的距离是多少? 已知抛物线Y^2=ax与直线y=x-1有唯一公共点,ze则该抛物线焦点到准线的距离 抛物线y=ax^2的准线方程是y=2,则a的值为多少 抛物线y=ax²的准线方程是y-2=0,则a的值是 抛物线y=ax²的准线方程y=2,则a的值是 直线X-2y+1=0,过焦点在y轴上的抛物线的焦点,与该抛物线相交于A,B两点,且绝对值AB=2/5.1.求抛物线准线方程.2.s三角形ABO 抛物线y=ax*2的准线方程为y=1,则a如题, 圆心在抛物线y^2=4x(y>0)上,并且与抛物线的准线及x轴都相切的圆的方程是 抛物线x^2+4y=0的准线方程 过抛物线y^2=2px(p>0)焦点F的直线与抛物线交于A,B两点,抛物线准线与x轴交于C点,若角CBF=90°,求AF-BF的值 圆心在抛物线y^2=4x(y>0)上,并且与抛物线准线交x轴都相切的圆的方程是 圆心在抛物线y²=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是? 抛物线Y=AX^2的准线方程是Y=1/32,则A的值为抛物线Y=AX^2的标准形式为x^2=Y/A a=-8吧