泰勒公式拉格朗日余项的那个Rn(x)怎来的?我是说Rn(x)是怎么求的,也就是说它的展开式怎样运用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:58:56

泰勒公式拉格朗日余项的那个Rn(x)怎来的?我是说Rn(x)是怎么求的,也就是说它的展开式怎样运用
泰勒公式拉格朗日余项的那个Rn(x)怎来的?
我是说Rn(x)是怎么求的,也就是说它的展开式怎样运用

泰勒公式拉格朗日余项的那个Rn(x)怎来的?我是说Rn(x)是怎么求的,也就是说它的展开式怎样运用
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项.
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘.)
证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:
P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n
来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式.设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An.显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!.至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n.
接下来就要求误差的具体表达式了.设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0.所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0.根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间.但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x).综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1).一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn.

泰勒公式拉格朗日余项的那个Rn(x)怎来的?我是说Rn(x)是怎么求的,也就是说它的展开式怎样运用 泰勒公式推导的思路为什么误差部分Rn(x)的表达式里要用(x-x0)^n+1,这个怎么来的?书上说是Rn(x)=f(x)-Pn(x),这个是怎么减出那个东西来的? 泰勒中值公式的详细证明《Rn(x)=f(x)-P(x)》 泰勒公式的余项是怎么确定的,Rn(x),希望写出每步详细过程, 泰勒级数收敛的充要条件老师,教材上说:函数f(x)可展开成泰勒级数的充要条件是泰勒公式中的拉格朗日余项Rn随n增大趋于0,如果泰勒公式中的前Sn项随n的增大不收敛,而拉格朗日余项Rn随n增 泰勒公式 在泰勒公式证明过程中,Rn(x.)=f(x.)-P(x.)=0是怎么得出来的,为什么Rn(x)的高阶导数要等于0. 微积分泰勒公式中在求误差Rn(x)的时候 有时会用θx 0 泰勒公式 证明泰勒中值定理是说函数f(x)等于n次多项式Pn(x)(就是f(x)的n阶泰勒公式)与Rn(x)(f(x)的n阶泰勒公式的余项)的和,余项具有形式[f(ξ)*(x-x0)^(n+1)]/[(n+1)!],所以需要证明的就是Rn(x)=[f( 泰勒中值定理证明中的问题为什么 Rn(n+1)(x)=f(n+1)(x)-Pn(n+1)(x)我只是想问 Rn(n+1)(x)=f(n+1)(x)。是怎么来的。 求f(x)=1/x 按(x+1)的幂展开的带有拉格朗日型余项的n阶泰勒公式 答案中Rn(x)的分母求f(x)=1/x 按(x+1)的幂展开的带有拉格朗日型余项的n阶泰勒公式答案中Rn(x)的分母中[-1+θ(x+1)] 关于带有拉格朗日余项的泰勒公式最后一项根号里面的 4+θ(x-4) 怎么来的啊. 泰勒定理(泰勒公式)的证明没看懂那个定理一直在证那个误差,而f(x)=p(x)+误差 根本没证啊 泰勒公式中拉格朗日余项里的c有取值范围吗?Rn(x)=f(n+1)(c)(x-a)^(n+1)/(n+1)!这个公式里的c是什么?有取值范围吗? 1/(x-1)的泰勒公式是什么? 当X0=-1时,求函数f(x)=1/x的n阶泰勒公式答案是f(x)=1/x的n阶泰勒公式为f(x)=-1-(x+1)-(x+1)^2-……(x+1)^n +Rn(x).我想问的是为什么每一项下面不除以阶乘? 有关泰勒公式的证明?泰勒中值定理中 f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2,+f'''(x.)/3!(x-x.)^3+……+f(n)(x.)/n!(x-x.)^n+Rn 这个等式怎么证明?f(x)为什么可以写成这样? 函数展开成幂级数的疑问在学泰勒公式部分,我们知道若函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,则在该邻域内f(x)的n阶泰勒公式为一个多项式+Rn(x)余项,这个公式应该是恒成立的,只要 泰勒公式!图中的f(x)用的勒中值定理,我想不明白的是:为何得到的是准确值?不是还有误差Rn(x)拉格朗日型余项?本人自学,可能课本前面那里没弄明白,