∫根号下(1+x^1/2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:33:44
∫根号下(1+x^1/2)dx
∫根号下(1+x^1/2)dx
∫根号下(1+x^1/2)dx
令a=√(1+√x)
x=(a²-1)²=a^4-2a²+1
dx=(4a³-4a)da
所以原式=∫a(4a³-4a)da
=∫(4a^4-4a²)da
=4a^5/5-4a³/3+C
=4(1+√x)²√(1+√x)/5-4(1+√x)√(1+√x)/3+C
∫√(1+√x) dx
let
√x = (tany)^2
[1/(2√x)]dx = 2tany. (secy)^2 dy
dx = 4(tany)^3. (secy)^2 dy
∫√(1+√x) dx
=4∫(tany)^3. (secy)^3 dy
=4∫ (tany)^2 (secy)^2 dsecy
=4∫ [(secy)^...
全部展开
∫√(1+√x) dx
let
√x = (tany)^2
[1/(2√x)]dx = 2tany. (secy)^2 dy
dx = 4(tany)^3. (secy)^2 dy
∫√(1+√x) dx
=4∫(tany)^3. (secy)^3 dy
=4∫ (tany)^2 (secy)^2 dsecy
=4∫ [(secy)^4 - (secy)^2] dsecy
= 4[ (secy)^5/5 - (secy)^3/3 ]+ C
= 4[ (√(1+√x))^5/5 - (√(1+√x))^3/3 ]+ C
where
√x = (tany)^2
x^(1/4) = tany
secy = √(1+√x)
收起
∫x-根号下x dx ∫lx-2l dx ∫1/根号下(4-x^2) dx ∫e^(-x) dx ∫2/根号下x dx ∫(1/x^2)sin(1/x) dx
∫dx/1+根号下x
∫ (x+1)/(根号下1-x^2)dx
高数 ∫ dx/(2+x)根号下1+x
∫根号下(1+x^1/2)dx
求不定积分∫dx/根号下(1-2x^2),
求积分 ∫根号下(x^2+1)dx
∫(arcsinx)/根号下1-x^2 dx
∫(ln2,0)根号下(1-e^(-2x) )dx
∫(根号下arctanx/1+x^2)dx ;∫((arcsinx)^2/根号下1-x^2)dx;∫e^xcos(e^x+1)dx
不定积分 dx/[(1+x)*根号下x]
不定积分 dx/[(1+x)*根号下x]
求不定积分x ∫(1-x^2)/x根号下x dx∫(1-x^2)/x*根号下x dx
不定积分dx/根号下1+x-x^2=
积分dx/x*根号下(x^2-1)
积分号x*根号下(1-x^2)dx
求不定积分 dx/(x^4 *根号下1+x^2)
求不定积分x根号下1+x^2dx