(log2) ^2 - log5 *log20课本上 等于 (log2)^2 +(1+log2)(1-log2) = 1;(log2)^2 +(1+log2)(1-log2) 是怎么来的?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 02:18:44

(log2) ^2 - log5 *log20课本上 等于 (log2)^2 +(1+log2)(1-log2) = 1;(log2)^2 +(1+log2)(1-log2) 是怎么来的?
(log2) ^2 - log5 *log20
课本上 等于 (log2)^2 +(1+log2)(1-log2) = 1;
(log2)^2 +(1+log2)(1-log2) 是怎么来的?

(log2) ^2 - log5 *log20课本上 等于 (log2)^2 +(1+log2)(1-log2) = 1;(log2)^2 +(1+log2)(1-log2) 是怎么来的?
【【注:好像你的题目中的对数是,以10为底的常用对数.】】
lg5=lg(10/2)=(lg10)-(lg2)=1-(lg2)
lg20=lg(2×10)=(lg2)+(lg10)=1+(lg2)
∴(lg5)×(lg20)=(1-lg2)(1+lg2)=1-(lg2)²
∴(lg2)²+(lg5)(lg20)=1

没能够理解你要问的是什么

log5=log(10/2)=log10-log2=1-log2
log20=log2*10=log2+log10=1+log2
∴代入就行了。

(1+log2)(1-log2) =1-log2*1+1*log2-(log2)^2=1-(log2)^2
(log2)^2 +(1+log2)(1-log2) =(log2)^2+1-(log2)^2=1

将(1+log2)(1-log2) 化简可得
=1×1-1×log2+1×log2-log2×log2
=1-(log2)^2
(log2)^2 +(1+log2)(1-log2)
=(log2)^2+1-(log2)^2
=1