一元二次方程竞赛题设x2-px+q=0的两根为a,b,1、求以a3,b3为二根的一元二次方程 2、若a3,b3为根的一元二次方程仍是x2-px+q=0,求所有这样的一元二次方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:56:25
一元二次方程竞赛题设x2-px+q=0的两根为a,b,1、求以a3,b3为二根的一元二次方程 2、若a3,b3为根的一元二次方程仍是x2-px+q=0,求所有这样的一元二次方程
一元二次方程竞赛题
设x2-px+q=0的两根为a,b,1、求以a3,b3为二根的一元二次方程 2、若a3,b3为根的一元二次方程仍是x2-px+q=0,求所有这样的一元二次方程
一元二次方程竞赛题设x2-px+q=0的两根为a,b,1、求以a3,b3为二根的一元二次方程 2、若a3,b3为根的一元二次方程仍是x2-px+q=0,求所有这样的一元二次方程
(如果是初中竞赛题)首先必须要说明 两个都是实数根 这个要交代下
(1) x^2-px+q=0
a+b=p
a*b=q
令a^3=A ,b^3=B A+B=a^3+b^3==(a+b)(a^2-ab+b^2)=(a+b)[(a+b)^2-3ab]
=p*(p^2-3q)
A*B=a^3*b^3=(ab)^3
=q^3
则 以a3,b3为二根的一元二次方程:
Y^2-[p*(p^2-3q)]Y+q^3=0
化简 Y^2-[p^3-3pq]Y+q^3=0
(2)由 a3,b3为根的一元二次方程仍是x2-px+q=0
则 p^3-3pq=p p^3-(3q+1)p=0 p[p^2-(3q+1)]=0
q^3=q
即 当 q=0 时 p= 0 或1 或-1
当 q=1 时 p= 0 或2 或-2
当 q=-1 时 p= 0
则所有条件的方程:当 q=0 时 (1)x^2=0 (2) x^2+1=0 (3)x^2-1=0
当 q=1 时(4)x^2+1=0(5)x^2+2x+1=0 (6)x^2-2x+1=0
当 q=-1 时 (6) x^2-1=0
而满足条件的 一元二次方程 应是以上的方程 :x^2=0
x^2-1=0
x^2+2x+1=0
x^2-2x+1=0
(ps:很久没做过了题目了,希望对你有所帮助,其中的步骤我尽量写具体点,做题应该不用重复一些内容了)