设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:56:23
设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式
设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式
设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式
验证(E E *(A B *(E -E
0 E) B A) 0 E)
=(A+B 0
B A-B),
其中E是N阶单位阵.等式两边取行列式,并注意到等式
右边矩阵的行列式为|A+B|*|A-B|可知结论成立.
设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式
设A、B是N阶矩阵证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵的那个公式
线性代数:设A是m*n矩阵,B是n*m矩阵,证明:Em-AB的行列式与En-BA的行列式相等如题
设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式请老师解答 谢谢
一个线代的证明题,什么思路?设A是n×m阶矩阵, B是m×n阶矩阵, 则这两个行列式相等:|En-AB|=|Em-BA|,E是单位矩阵.如何证明?
设A,B都是n阶矩阵,证明AB是对称矩阵的充分必要条件是AB=BA
设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.
设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.
设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA
设A,B是n阶矩阵,且A可逆,证明AB与BA相似.
如何证明n阶对角矩阵是AB=BA
设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA
设A、B为同阶对称矩阵,证明AB+BA是对称矩阵,AB-BA是反称矩阵.
设A、B为同阶对称矩阵,证明AB+BA是对称矩阵,AB-BA是反称矩阵.
设A,B是n阶矩阵,E是n阶单位矩阵,且AB=A-B证明A+E可逆,证明AB=BA
设AB都是n阶矩阵,且|A|不等于0证明AB与BA相似
设ab都是n阶矩阵且a可逆证明ab与ba相似
设ab都是n阶矩阵且a可逆证明ab与ba相似