、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:(1)以x、m、n为边长的三角形是什么三角形?(请证明)(2)如果该三角形中有一个内角为60°,求AM:AB.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:55:05

、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:(1)以x、m、n为边长的三角形是什么三角形?(请证明)(2)如果该三角形中有一个内角为60°,求AM:AB.
、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:
(1)以x、m、n为边长的三角形是什么三角形?(请证明)
(2)如果该三角形中有一个内角为60°,求AM:AB.
 

、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:(1)以x、m、n为边长的三角形是什么三角形?(请证明)(2)如果该三角形中有一个内角为60°,求AM:AB.
要回家了,先答第一问吧
 

 
 
 
(1)
如图:作△ACM≌△BCD,
∴∠ACM=∠BCD,∠A=∠CBD=45°,CM=CD,AM=BD=m,
∵∠ACB=90°, ∠MCN=45°
∴∠ACM+∠NCB =45°
∴∠NCD=∠BCD+∠NCB =45°
∴∠MCN=∠NCD =45°,
又∵CN=CN,
∴△MNC≌△DNC,
∴MN=ND=x, 
又∵∠DBN=∠CBA+∠CBD= 45°+45°=90°,
∴DN^2=DB^2+NB^2
∴MN^2=AM^2+NB^2
∴x^2=m^2+n^2
∴以x、m、n为边长的三角形是直角三角形
 
 
到家了,再作第二问
(2)、
如果该三角形中有一个内角为60°,则另一内角为30°,斜边为x,
如果设n=x/2,则m=(√3/2)x
AM/AB=m/(m+x+n)
=(√3/2)x /[(√3/2)x+x+x/2]
=(√3/2) /[√3/2+1+1/2]
=(√3-1)/2
如果设m=x/2, 则n=(√3/2)x
AM/AB=m/(m+x+n)
=(x/2)/[x/2+x+(√3/2)x]
=(3-√3)/6

已知如图,Rt△ABC的三边为斜边,分别向外作等腰直角三角形,若斜边AB=a 已知,如图,在Rt△ABC中,CD是斜边AB上的高, 如图,在任意△abc中,分别以ab,ac为斜边向下作等腰Rt△abd和等腰Rt△ace 如图在等腰RT△ABC中,CD是斜边上的高,△ACD和△CBD都和△ABC相似吗?证明 !如图在等腰RT△ABC中,CD是斜边上的高,△ACD和△CBD都和△ABC相似吗?证明过程谢谢 、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:(1)以x、m、n为边长的三角形是什么三角形?(请证明)(2)如果该三角形中有一个内角为60°,求AM:AB. 如图,等腰Rt△ABC中,角ACB=90°,AC=BC=4,圆C的半径为1,点P在斜边AB上,切圆O于点Q,求切线PQ长度的最小值 已知;如图,以RT△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=3,则图中阴影部分的面积为多少 已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=4、则图中阴影部分的面积为 已知如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3.则图中阴影部分的面积为______. 已知如图,Rt△ABC的三边为斜边,分别向外作等腰直角三角形,若斜边AB=3,求阴影部分面积. 已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分面积为? 已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=4,则图中阴影部分面积为? 已知如图,Rt△ABC的三边为斜边,分别向外作等腰直角三角形,若斜边AB=3,求阴影部分面积不要用根号 如图,P是等腰Rt△ABC的斜边AC上一点,PE⊥AB于点E,PF⊥BC于点F,PG⊥EF于点G,在GP延长线上取一点D,使PD=PB,则BC与DC的关系是( ) 如图,已知Rt△ABC中,∠A=90°,AB=4,AC=3,点AO是斜边BC上的中线.求:等腰△AOB和等腰△AOC腰上的高快!! 如图,在等腰Rt△ABC中,∠ACB=90°,D是斜边上一点,AE⊥CD于点D如图,在等腰Rt△ABC中,∠ACB=90°,D是斜边上一点,AE⊥CD于点E,BF⊥CD,交CD的延长线于点F,CH⊥AB于点H,交AE于点G,BD与CG相等吗?请说明理由. 已知:如图,在Rt△ABC中,EF是中位线,CD是斜边,CD是斜边AB上的中线,求证:EF=CD