S n是a n的前n项和,且Sn+1=4a n+2,(n≥1) a1=1 1.b n=a n+1-a n,证明b n等比 2.c n=a n/2²,证明c n等差 3.求Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:52:22

S n是a n的前n项和,且Sn+1=4a n+2,(n≥1) a1=1 1.b n=a n+1-a n,证明b n等比 2.c n=a n/2²,证明c n等差 3.求Sn
S n是a n的前n项和,且Sn+1=4a n+2,(n≥1) a1=1 1.b n=a n+1-a n,证明b n等比 2.c n=a n/2²,证明c n等差 3.求Sn

S n是a n的前n项和,且Sn+1=4a n+2,(n≥1) a1=1 1.b n=a n+1-a n,证明b n等比 2.c n=a n/2²,证明c n等差 3.求Sn
1、
n=1时,a1=S1=-1²=-1
n≥2时,Sn=-n²+(n-1)²=-2n+1
n=1时,a1=-2+1=-1,同样满足
数列{an}的通项公式为an=-2n+1
a(n+1)+b(n+1)=3(an+bn)
-2(n+1)+1+b(n+1)=3(-2n+1+bn)
b(n+1)=3bn-4n+4=3bn-4(n-1)
又b(n+1)=3bn-t(n-1)
t=4
2、
a(n+1)+b(n+1)=3(an+bn)
[a(n+1)+b(n+1)]/(an+bn)=3,为定值.
a1+b1=-1+2=1
数列{an+bn}是以1为首项,3为公比的等比数列.
an+bn=3^(n-1)
an²+anbn=an(an+bn)=(1-2n)×3^(n-1)=3^(n-1)-2n×3^(n-1)
Tn=3^0+3^1+...+3^(n-1) -2[1×3^0+2×3^1+...+n×3^(n-1)]
令Cn=1×3^0+2×3^1+...+n×3^(n-1)
则3Cn=1×3^1+2×3^2+...+(n-1)×3^(n-1)+n×3ⁿ
Cn-3Cn=-2Cn=3^0+3^1+...+3^(n-1) -n×3ⁿ
Tn=2×[3^0+3^1+...+3^(n-1)]=3ⁿ-1
m,k,r成等差数列,设m=k-d,则r=k+d
T(m+1)=3^(k-d+1) -1 T(k+1)=3^(k+1) -1 T(r+1)=3^(k+d+1) -1
若存在m,k,r满足T(m+1),T(k+1),T(r+1)成等比数列,则
T(k+1)²=T(m+1)×T(r+1)
[3^(k+1)-1]²=[3^(k-d+1)-1][3^(k+d+1)-1]
整理,得
3^d +1/3^d =2
3^d=1 d=0
m=k-d=k-0=k r=k+d=k+0=k m=k=r,与已知不符.
综上,不存在满足题意的m、k、r.

S n是a n的前n项和,且Sn+1=4a n+2,(n≥1) a1=1 1.b n=a n+1-a n,证明b n等比 2.c n=a n/2²,证明c n等差 3.求Sn 数列{an}的前n项和记为Sn,已知a1=(n+2/n)Sn(n=1,2,3……),证明数列{Sn/n}是等比数列以及S(n+1)=4a 设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,证明数列{a(n+2)-an}是常数数列设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,an≠0,n=2,3,4……证明数列{a(n+2)-an}(n≥2)是常数数列 已知数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=[(n+2)/n]Sn,证明:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4Sn 数列{an}的前n项和记注意Sn ,a1=1,a(n+1)=(n+2)Sn/n(n=1,2,3```)证明{Sn/n}是等比数列(2)S(n+1)=4an an的前n项和Sn,a1=1,an+1=(n+2)/nSn,证数列Sn/n是等比数列和Sn+1=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn 即nS(n+1)-nSn=(n+2)Sn 为什么A(n+1)=S(n+1)-Sn ,S(n+1)-Sn不是应该等于 An吗怎么会是An+1啊 数列An的前n项和Sn,A(1)=1,A(n+1)=(n+2)Sn/n,证明1.Sn/n是等差数列 2.S(n+1)=4An 一道关于高中数学的等比数列的题数列{a的第n项}的前n项和计为Sn,已知a1=1,a的第(n+1)项=Sn*(n+2)/n求证:(1)数列{Sn/n}是等比数列(2)前n+1项之和,即S(n+1)=4*(a的第n项) 数列{an}的前n项和记为Sn,已知a(1)=1,a(n+1)=Sn×〔(n+2)|n〕,n属于N证明:(1)数列{Sn|n}是等比数列;(2)S(n+1)=4×an 数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n属于N*)求数列通项解一:a(n+1)=2Sn所以an=2S(n-1)相减,且Sn-S(n-1)=an所以a(n+1)=3an所以an是等比数列,q=3a1=1所以an=3^(n-1)解二:a(n+1)=S(n+1)-Sn a(n+1)=2Sn 故S(n+1)=3Sn,S1=a1=1{S 设数列an的前n项和为Sn.已知首项a1等于3,且S(n+1)+Sn=2a(n+1)求通项公式以及前n项和sn {an}是等差数列,a1不等于0,Sn是它前n项的和.求lim (n→∞) (Sn+S(n+1))/(Sn+S(n-1)) 已知数列an的前n项和为sn,且a1=1,a(n+1)=sn(n+2)/n,(n属于正整数)(1)求a2,a3,a4:(2)证明:数列sn/n是等比数列. 等差数列{an}的前n项和为Sn,且S4=20,S(n-4)=60,Sn=120,则n=? Help!Sn是数列(a n)的前n项和,a n=(2n)^2 /(2n-1)(2n+1),求Sn 已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*(1)证明{an -1}是等比数列(2)求数列{Sn}的通项公式,并求出使得S(n+1)>Sn成立的最小整数nSn=n-5an-85 (1)S(n+1)=n+1-5a(n+1)-85 (2)(2)-(1)整理得6a(n+1)=1 求极限,数列An是等差数列,且A1不等于0,Sn是前N项和求(n*(an))/Sn的极限和(Sn+S(n1))/(Sn+S(n-1)) 已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*求数列{Sn}的通项公式,并求出使得S(n+1)>Sn成立的最小整数n