设计3种合理的拼图验证勾股定理,并写出验证过程!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:56:25
设计3种合理的拼图验证勾股定理,并写出验证过程!
设计3种合理的拼图验证勾股定理,并写出验证过程!
设计3种合理的拼图验证勾股定理,并写出验证过程!
【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
, 整理得 .
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于.
∴ . ∴ .
【证法3】(赵爽证明)
以a、b 为直角边(b>a), 以c为斜
边作四个全等的直角三角形,则每个直角
三角形的面积等于. 把这四个直角三
角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于.
∴ .
∴ .
【证法4】(1876年美国总统Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一个等腰直角三角形,
它的面积等于.
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD‖BC.
∴ ABCD是一个直角梯形,它的面积等于.
∴ .
∴ .
【证法5】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
2009-6-1 13:33 回复
58.35.16.* 2楼
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90º.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90º.
即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则
,
∴ .
【证法6】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP‖BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90º,QP‖BC,
∴ ∠MPC = 90º,
∵ BM⊥PQ,
∴ ∠BMP = 90º,
∴ BCPM是一个矩形,即∠MBC = 90º.
∵ ∠QBM + ∠MBA = ∠QBA = 90º,
∠ABC + ∠MBA = ∠MBC = 90º,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF.
从而将问题转化为【证法4】(梅文鼎证明).
【证法7】(赵浩杰证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.
分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90º,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90º,
∴∠ABG +∠CBJ= 90º,
∵∠ABC= 90º,
∴G,B,I,J在同一直线上,
从而将问题转化为【证法4】(梅文鼎证明).
【证法8】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点
L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
2009-6-1 13:33 回复
58.35.16.* 3楼
∵ ΔFAB的面积等于,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 =.
同理可证,矩形MLEB的面积 =.
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
∴ ,即 .
【证法9】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中,
∵ ∠ADC = ∠ACB = 90º,
∠CAD = ∠BAC,
∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB,
即 .
同理可证,ΔCDB ∽ ΔACB,从而有 .
∴ ,即 .
【证法10】(杨作玫证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.
∵ ∠BAD = 90º,∠PAC = 90º,
∴ ∠DAH = ∠BAC.
又∵ ∠DHA = 90º,∠BCA = 90º,
AD = AB = c,
∴ RtΔDHA ≌ RtΔBCA.
∴ DH = BC = a,AH = AC = b.
由作法可知, PBCA 是一个矩形,
所以 RtΔAPB ≌ RtΔBCA. 即PB =
CA = b,AP= a,从而PH = b―a.
∵ RtΔDGT ≌ RtΔBCA ,
RtΔDHA ≌ RtΔBCA.
∴ RtΔDGT ≌ RtΔDHA .
∴ DH = DG = a,∠GDT = ∠HDA .
又∵ ∠DGT = 90º,∠DHF = 90º,
∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,
∴ DGFH是一个边长为a的正方形.
∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .
∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).
用数字表示面积的编号(如图),则以c为边长的正方形的面积为
①
∵ = ,
,
∴ = . ②
把②代入①,得
= = .
∴ .
【证法11】(李锐证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).
∵ ∠TBE = ∠ABH = 90º,
∴ ∠TBH = ∠ABE.
又∵ ∠BTH = ∠BEA = 90º,
BT = BE = b,
∴ RtΔHBT ≌ RtΔABE.
∴ HT = AE = a.
2009-6-1 13:33 回复
58.35.16.* 4楼
∴ GH = GT―HT = b―a.
又∵ ∠GHF + ∠BHT = 90º,
∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,
∴ ∠GHF = ∠DBC.
∵ DB = EB―ED = b―a,
∠HGF = ∠BDC = 90º,
∴ RtΔHGF ≌ RtΔBDC. 即 .
过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE
= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌
RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 .
由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.
∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,
∴ ∠FQM = ∠CAR.
又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,
∴ RtΔQMF ≌ RtΔARC. 即.
∵ ,
又∵ ,
∴
=
=,
即 .
【证法12】(利用切割线定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得
=
=
= ,
即,
∴ .
【证法13】(利用多列米定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有
,
∵ AB = DC = c,AD = BC = a,
AC = BD = b,
∴ ,即 ,
∴ .
【证法14】(作直角三角形的内切圆证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.
∵ AE = AF,BF = BD,CD = CE,
∴
= = r + r = 2r,
即 ,
∴ .
∴ ,
即 ,
∵ ,
∴ ,
又∵ = =
= = ,
∴ ,
∴ ,
∴ , ∴ .
【证法15】(利用反证法证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
假设,即假设 ,则由
==
可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.
在ΔADC和ΔACB中,
∵ ∠A = ∠A,
∴ 若 AD:AC≠AC:AB,则
∠ADC≠∠ACB.
2009-6-1 13:33 回复
58.35.16.* 5楼
在ΔCDB和ΔACB中,
∵ ∠B = ∠B,
∴ 若BD:BC≠BC:AB,则
∠CDB≠∠ACB.
又∵ ∠ACB = 90º,
∴ ∠ADC≠90º,∠CDB≠90º.
这与作法CD⊥AB矛盾. 所以,的假设不能成立.
∴ .
【证法16】(辛卜松证明)
设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 =.
∴ ,
∴ .
【证法17】(陈杰证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).
在EH = b上截取ED = a,连结DA、DC,
则 AD = c.
∵ EM = EH + HM = b + a , ED = a,
∴ DM = EM―ED = ―a = b.
又∵ ∠CMD = 90º,CM = a,
∠AED = 90º, AE = b,
∴ RtΔAED ≌ RtΔDMC.
∴ ∠EAD = ∠MDC,DC = AD = c.
∵ ∠ADE + ∠ADC+ ∠MDC =180º,
∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,
∴ ∠ADC = 90º.
∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形.
∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,
∴ ∠BAF=∠DAE.
连结FB,在ΔABF和ΔADE中,
∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,
∴ ΔABF ≌ ΔADE.
∴ ∠AFB = ∠AED = 90º,BF = DE = a.
∴ 点B、F、G、H在一条直线上.
在RtΔABF和RtΔBCG中,
∵ AB = BC = c,BF = CG = a,
∴ RtΔABF ≌ RtΔBCG.
∵ , , ,
,
∴
=
=
=
∴ .