已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.试证:在(a,b)内至少存在一点§,使得f(§)+f'(§)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:40:10
已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.试证:在(a,b)内至少存在一点§,使得f(§)+f'(§)=0
已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.试证:在(a,b)内至少存在一点§,使得
f(§)+f'(§)=0
已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.试证:在(a,b)内至少存在一点§,使得f(§)+f'(§)=0
利用柯西中值定理证明.
设g(x)=lnx,则根据条件可知:
f(x),g(x)在(a,b)上满足柯西中值定理条件,
∴在(a,b)上存在ξ,使得:
[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)
即:[f(b)-f(a)]/ln(b/a)=f'(ξ)/(1/ξ)
移项整理即得:f(b)-f(a)=ξf'(ξ)ln(b/a)
这样可以么?
设g(x)=f(x)e^x,由题意知g(x)连续且可导,
又∵g(a)=g(b)=0, 由罗尔定理必有g'(§)=0
g'(§)=f'(§)e^§+f(§)e^§=0
即 f(§)+f'(§)=0
证毕。
设函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
已知函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续且f'(x)
已知函数f(x) g(x) 均为[a,b]上的可导函数,在[a,b]上连续且f'(x)
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
设函数f(x)在[a,b]上连续,在(a,b)内可导(0
若函数f(x)在[a,b]上连续,则f(x)在(a,b)内必有原函数,为什么
设函数f 在[a,b]上连续,M=max|f(x)|(a
f(x)在a到b上连续,f(x)
一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.试证:在(a,b)内至少存在一点§,使得f(§)+f'(§)=0
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
证明:函数f(x)在闭区间[a,b]上连续,a