∫dx/[cos^2(2x+兀/4)]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:00:17
∫dx/[cos^2(2x+兀/4)]
∫dx/[cos^2(2x+兀/4)]
∫dx/[cos^2(2x+兀/4)]
哈哈哈你的pi写的太好玩了
∫dx/[cos^2(2x+π/4)]
=∫dx/[1/2cos(4x+π/2)+1/2]
=∫dx/[-1/2sin(4x)+1/2]
=1/8*cos(4x)+C (C为常数)
∫dx/[cos^2(2x+兀/4)]
cos(x^2)dx
∫x*(cos^2x)dx
∫x/[(cos^2)x]dx
∫sin(x) cos^2(x)dx
∫dx/cos^2X+4sin^2X
求微积分 ∫sin^2(x)cos^4(x) dx
∫[1/(sin^2(x)cos^4(x)]dx
求解∫1/(cos^4(x)sin^2(x))dx
计算∫π/4~0 x/cos^2x dx
∫cos^2(x/2)dx
求∫2/(2+cos x)dx
求:∫cos^2(2x)dx
∫(1-cos^(2)2x)dx
∫(2/cos^2x)dx=
∫xsinx/cos^2x dx
∫cos(x+2)dx=多少
∫(1+sinx) / cos^2 x dx