如图所示,梯形ABCD中,AB∥CD,两对角线交于点O,过点O做两底的平行线交两腰AD,BC于M、N.求证1/AB+1/CD=2/MN
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:45:31
如图所示,梯形ABCD中,AB∥CD,两对角线交于点O,过点O做两底的平行线交两腰AD,BC于M、N.求证1/AB+1/CD=2/MN
如图所示,梯形ABCD中,AB∥CD,两对角线交于点O,过点O做两底的平行线交两腰AD,BC于M、N.求证1/AB+1/CD=2/MN
如图所示,梯形ABCD中,AB∥CD,两对角线交于点O,过点O做两底的平行线交两腰AD,BC于M、N.求证1/AB+1/CD=2/MN
证明:因为MN平行BC平行AD
所以OM/AB=OB/BD
ON/BC=OD/BD
所以OM/AB+ON/BC=(OB+OD)/BD=BD/BD=1 (1)
同理可证:ON/AB=OC/AC
OM/CD=OA/AC
所以ON/AB+OM/CD=(OC+OA)/AC=AC/AC=1 (2)
(1)+(2)
(ON+OM)/AB+(ON+OM)/CD)=2
因为OM+ON=MN
所以MN/AB+MN/CD=2
所以1/AB+1/CD=2/MN
证明:∵AB∥MN∥CD.
∴MO/AB=DO/DB;ON/CD=BO/DB.
则MO/AB+ON/CD=(DO+BO)/DB=1;
同理可证:MO/CD+ON/AB=1.
∴(MO/AB+ON/AB)+(MO/CD+ON/CD)=2.
即MN/AB+MN/CD=2.
∴1/AB+1/CD=2/MN. ----------------(即上式两边同除以MN).
证明:∵AB∥MN∥CD.
∴MO/AB=DO/DB;ON/CD=BO/DB.
则MO/AB+ON/CD=(DO+BO)/DB=1;
同理可证:MO/CD+ON/AB=1.
∴(MO/AB+ON/AB)+(MO/CD+ON/CD)=2.
即MN/AB+MN/CD=2.
∴1/AB+1/CD=2/MN. ----------------(即上式两边同除以MN). ∵OM+ON=MN
∴MN/AB+MN/CD=2
∴1/AB+1/CD=2/MN