设f(x)是定义在R上的奇函数,且当x>=0时,f(x)单调递减,若x1+x2>0,则f(x1)+f (x2)的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:48:38

设f(x)是定义在R上的奇函数,且当x>=0时,f(x)单调递减,若x1+x2>0,则f(x1)+f (x2)的值.
设f(x)是定义在R上的奇函数,且当x>=0时,f(x)单调递减,若x1+x2>0,则f(x1)+f (x2)的值.

设f(x)是定义在R上的奇函数,且当x>=0时,f(x)单调递减,若x1+x2>0,则f(x1)+f (x2)的值.
因为f(x)是定义在R上的奇函数,所以f(0)=0
又当x>=0时,f(x)单调递减,所以当x>=0时,f(x)<=0
x1+x2>0,则x1> -x2 因为X>=0.所以 - X2

因为f﹙x﹚是奇函数,f﹙0﹚=0,且当x≥0时fx单调递减,当x1>0,x2>0时f﹙x1﹚<0,f﹙x2﹚<0,f﹙x1﹚+f﹙x2﹚<0
当x1>0,x2<0时,-x2<x1,f﹙-x2﹚>f﹙x1﹚,则-f﹙x2﹚>f﹙x1﹚即f﹙x1﹚+f﹙x2﹚<0,同理x1<0,x2>0时也成立
综上,f﹙x1﹚+f﹙x2﹚<0