常数、有理数、无理数、实数、的概念是什么?请尽量解释得清楚点.其他的数也请解释下。
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:50:41
常数、有理数、无理数、实数、的概念是什么?请尽量解释得清楚点.其他的数也请解释下。
常数、有理数、无理数、实数、的概念是什么?
请尽量解释得清楚点.
其他的数也请解释下。
常数、有理数、无理数、实数、的概念是什么?请尽量解释得清楚点.其他的数也请解释下。
常量中的取值我们叫常数(常量相对变量来说的,变量表示这个量是可以变的,常量表示这个量是恒定的,比如说标准大气压等等,它的取值就是一个常数),有些函数中某些给定的数也叫常数.
有理数,在整数的基础上通过加减乘除得到的一切数我们都统称为有理数,由此你可以看出有理数包括了整数,并且它是最小的一个数域(数域就是表示对加减乘除封闭),因此,有理数一定可以用p/q的形式表示出来,其中p,q都是整数.
无理数相对有理数来说的,它不能用p/q表示出来(p,q也为整数).因此无理数一定是无限不循环小数.
实数是有理数和无理数的统称,因此它包含着有理数.(你可以验证实数也是一个数域)
以后你还会接触一个更大的数域——复数,它包含着实数.
实数:你现在见过的所有的数都可以称之为实数,但凡一个数里面出现了 i 这个字母,那么这个数便不是实数。1、8、-900、45.97、√3、π等等~
有理数:化简以后没有根号的数就是有理数(根号4、9、16、25等等是可以化简的)。1.3、68、70.9023都是有理数。
整数:没有小数点,或者根号或者分数线的就是整数。-1、-5、-8、6、0、1000等等都是整数。
...
全部展开
实数:你现在见过的所有的数都可以称之为实数,但凡一个数里面出现了 i 这个字母,那么这个数便不是实数。1、8、-900、45.97、√3、π等等~
有理数:化简以后没有根号的数就是有理数(根号4、9、16、25等等是可以化简的)。1.3、68、70.9023都是有理数。
整数:没有小数点,或者根号或者分数线的就是整数。-1、-5、-8、6、0、1000等等都是整数。
自然数:整数的一部分,0、1、2、3、4、5、6……都是自然数。
分数:只要不是整数的有理数就都可以称之为分数(小数),所以你所提出的所有的那些数都是分数~
收起
常数就是常量,是恒定不变的数,多出现在函数中,例如函数y=2x中常数是2;实数有理数和无理数的总称,有理数指能表示为p/q,p、q为整数的数,即指有限小数或无限循环小数,例如:0,1,1/3;无理数指不能表示为p/q,p、q为整数的数,即指无限不循环小数,例如:e=2.71828……,兀=3.1415926……,根号2
有理数与无理数总称为实数。
而无理数则不然,从它的发现到它的...
全部展开
常数就是常量,是恒定不变的数,多出现在函数中,例如函数y=2x中常数是2;实数有理数和无理数的总称,有理数指能表示为p/q,p、q为整数的数,即指有限小数或无限循环小数,例如:0,1,1/3;无理数指不能表示为p/q,p、q为整数的数,即指无限不循环小数,例如:e=2.71828……,兀=3.1415926……,根号2
有理数与无理数总称为实数。
而无理数则不然,从它的发现到它的严格定义,是曲折而漫长的。所以研究实数理论主要是研究无理数理论。
到了19世纪70年代,著名的德国数学家外尔斯特拉斯 1815-1897 、康托尔 1845-1918 和法国的柯西 1789-1857 及戴德金 1831-1916 等都对实数理论进行了研究,获得了几种形异而实同的实数理论,其中以戴德金分割法 1872 ;康托尔的有理数「基本序列」法 1872 为最有代表性。上述两法与外尔斯特拉斯的实数理论合称实数理论的三大派。
由极限理论可知,有极限的有理数列都应该是基本数列,例如若a为有理数,常数数列
a, a…, a,……
当然是基本数列,它的极限就是a本身。对2进行开平方,可依次得出一列有限小数
1,1.4,1.41,1.414,1.4142,……
也是一个基本数列,如果已经定义了实数的话,那么它的极限应该是,但是在尚未引进无理数,而只有有理数的情况下,上述基本数列是没有极限的。这就启示我们,把每一个「基本数列」当做一种新的「数」来看待,即凡是收敛于有理数a的基本数列,把它看作有理数a,凡不能收敛于有理数的基本数列,就把它看做新的「数」——无理数。从而把基本数列的全体可当做一个「数集」,称它为实数集。
收起
常数
1.规定的数量与数字。
2.一定的规律。
3.一定之数或通常之数。
4.一定的次序。
5.数学名词。固定不变的数值。如圆的周长和直径的比(π)约为3.1416、铁的膨胀系数为0.000012等。
常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。
有理数
整数和分数统称为有理数,任...
全部展开
常数
1.规定的数量与数字。
2.一定的规律。
3.一定之数或通常之数。
4.一定的次序。
5.数学名词。固定不变的数值。如圆的周长和直径的比(π)约为3.1416、铁的膨胀系数为0.000012等。
常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。
有理数
整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。
无限不循环小数和开根开不尽的数叫无理数 ,比如π,3.1415926535897932384626......
而有理数恰恰与它相反,整数和分数统称为有理数
包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。
这一定义在数的十进制和其他进位制(如二进制)下都适用。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογος ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
有理数分为整数和分数
整数又分为正整数、负整数和0
分数又分为正分数、负分数
正整数和0又被称为自然数
如3,-98.11,5.72727272……,7/22都是有理数。
全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。
无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。
有理数是所有的分数,整数,它们都可以化成有限小数,或无限循环小数。如7/22等。
实数(real munber)分为有理数和无理数(irrational number)。
·无理数与有理数的区别:
1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,
比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,
比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数.
2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。
利用有理数和无理数的主要区别,可以证明√2是无理数。
证明:假设√2不是无理数,而是有理数。
既然√2是有理数,它必然可以写成两个整数之比的形式:
√2=p/q
又由于p和q没有公因数可以约去,所以可以认为p/q 为既约分数,即最简分数形式。
把 √2=p/q 两边平方
得 2=(p^2)/(q^2)
即 2(q^2)=p^2
由于2q^2是偶数,p 必定为偶数,设p=2m
由 2(q^2)=4(m^2)
得 q^2=2m^2
同理q必然也为偶数,设q=2n
既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是既约分数矛盾。这个矛盾是有假设√2是有理数引起的。因此√2是无理数。
实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a
②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:
|a|= ①a为正数时,|a|=a
②a为0时, |a|=0
③a为负数时,|a|=-a
③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)
详细还是看百度百科吧
http://baike.baidu.com/view/122755.htm
http://baike.baidu.com/view/122755.htm
http://baike.baidu.com/view/1197.htm
http://baike.baidu.com/view/1167.htm
收起