设f(x)在[0,1]上二阶可导,且f(0)=f(1),设F(x)=(1-x)*f(x),证明:存在§属于(0,1)使得F''(§)=0.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:34:01
设f(x)在[0,1]上二阶可导,且f(0)=f(1),设F(x)=(1-x)*f(x),证明:存在§属于(0,1)使得F''(§)=0.
设f(x)在[0,1]上二阶可导,且f(0)=f(1),设F(x)=(1-x)*f(x),证明:存在§属于(0,1)使得F''(§)=0.
设f(x)在[0,1]上二阶可导,且f(0)=f(1),设F(x)=(1-x)*f(x),证明:存在§属于(0,1)使得F''(§)=0.
F ‘(x)=(1-x)*f ’(x)-f(x);
F ‘(0)=f ‘(0)-f(0),F ‘(1)=-f(1);
我们构造G(x)=F(x)+x f (1)=(1-x)*f(x)+x f (1)
那么有:G ’‘(x)=F ’‘(x);G ’(x)=F ‘(x)+f (1);
又因为G(0)=F(0)=f(0)=f(1)=G(1)
所以:存在m属于(0,1),满足G ’(m)=0
所以存在m,F ‘(m)+f (1)=0;
F ‘(m)=-f (1);
又因为F ‘(1)=-f(1)
所以存在存在§属于(m,1)使得F''(§)=0.也就是原题中的结论也成立
微积分 设f(x)在[0,1]X上二阶可导,f(1)=f(0)=0设f(x)在[0,1]X上二阶可导,f(1)=f(0)=0,且max f(x)=2 (0
设函数f(x)在闭区间[0,1]上可导,且f(0)×f(1)
设函数f(x)在[0,1]上可导,且0
设函数f(x)在[0,1]上可导,且0
设f(x)在[1,e]上可导,且0
设f(x)在[0,1]上可积,且a
设f(x)在[0,1]上二阶可导,且f(0)=f(1),设F(x)=(1-x)*f(x),证明:存在§属于(0,1)使得F''(§)=0.
设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加
设f(x)在[0,1]二阶可导,且f(x)在(0,1)上最大值为1/4,|f ''(x)|
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
一道高数证明题,设函数f(x)在[0,1]上可导,且|f'(x)|
设f(x)在(0,1)具有二阶导数,且|f(x)|
设f(x)在[0,1]上连续,且f(x)
高等数学问题:设f(x)在[0,1]上连续,且f(x)
设f (x)在x=0处可导,且f (0)=0,求证:lim(x→∞)f (tx)-f (x)/x=(t-1)f' (0)
设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x
设函数f(x)在(-1,1)有定义且满足x≤f(x)≤x²+x证明f'(0)存在且f'(0)=1