设M(a,0)是抛物线y^2=2px对称轴上的一个定点,过M的直线交抛物线于A,B两点,其纵坐标分别为y1,y2,求证:y1y2为定值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:29:40

设M(a,0)是抛物线y^2=2px对称轴上的一个定点,过M的直线交抛物线于A,B两点,其纵坐标分别为y1,y2,求证:y1y2为定值.
设M(a,0)是抛物线y^2=2px对称轴上的一个定点,过M的直线交抛物线于A,B两点,其纵坐标分别为y1,y2,求证:y1y2为定值.

设M(a,0)是抛物线y^2=2px对称轴上的一个定点,过M的直线交抛物线于A,B两点,其纵坐标分别为y1,y2,求证:y1y2为定值.
证明:设过M的直线方程为y=k(x-a)+b
联立y=k(x-a)
y^2=2px
消去x得:
ky^2/(2p)-y-ak=0
因为交点AB的纵坐标为y1y2,显然纵坐标为该方程的两根
则根据韦达定理:
y1y2=(-ak)/(k/2p)
=2p(-ak)/k
=-2pa
=定值
命题获证

设直线为X=mY+a
将该式代入y^2=2px 得y^2-2pmY-2pa=0若抛物线与直线有交点 则该式有解所以存在Y1Y2=-2Pa为一定值

设M(a,0)是抛物线y^2=2px对称轴上的一个定点,过M的直线交抛物线于A,B两点,其纵坐标分别为y1,y2,求证:y1y2为定值. 抛物线y^=2px(p>0)上一点m到焦点的距离是a(a 如图,过点P(m,0)(m≠0)斜率为k的直线l交抛物线y^2=2px(p>0)于A,B两点,A点关于x轴的对称点为C.已知当AC过抛物线焦点时,⊿OAB的面积为1/2(O为坐标原点).(1)求此抛物线的方程;(2)设直线B 、、、设抛物线y2=2px(P>0)过点P(1,2) 设直线PM、PN关于直线x=1对称,与抛物线交于点M、N证明:直线MN的斜率为定值 抛物线y^2 =2px关于直线y=-x+1对称的曲线方程是_____________________. 1、已知点A(-2,3)到抛物线y^2=2px(p大于0)焦点F的距离是5,求抛物线方程.2、已知点A(m,-3)在抛物线y^2=2px(p大于0)上,它到抛物线焦点F的距离为5,若m大于0,求抛物线方程. 已知抛物线y^2=2px及定点A(a,b),B(-a,0),ab≠0,b^2≠2pa,M是抛物线上的点,设直线AM,BM,与抛物线另一个交点分别为M1,M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为? 设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列 已知一元二次方程x²+px+q+1=0的根是2 设抛物线y=x²+px+q的顶点为M,且与x轴相较于A(x1,0),B(x2,0)两点求使△AMB面积最小时的抛物线解析式 F是抛物线y²=2px(p>0)的焦点,设M是抛物线上任一点,MN垂直准线,N为垂足,则线段NF的垂直平分线l与双曲线位置关系是(相切)为什么? 设抛物线y^2=2px(p>0)的焦点为F,A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离是? 抛物线相关抛物线M:Y^2=2PX;直线L:Y=KX(K>0);M上两点A(X1,Y1)、B(X2、Y2)关于直线L的对称点分别是A1(0,8)、B1(-1,0),求解P和K的值,就是得到抛物线和直线的表达式!P>0,这个就不用提示 已知抛物线x2=4y,过定点M(0,m)(M>0)的直线l交抛物线于AB两点当m>2,抛物线上存在不同两点PQ关于直线l对称,求弦长PQ最大值答案是设PQ直线代人抛物线,求△ 我想直接设P,Q两点在抛物线上. 抛物线切线方程已知抛物线方程为y^2=2px,抛物线上一点M(a,b),求过M点的抛物线的切线方程~ 已知抛物线C:y^2=4px(p>0)的焦点在直线l:x-my-p^2=0上已知抛物线C:y^2=4px(p>0)的焦点在直线l:x-my-p^2=0,1.求抛物线方程2设直线l与抛物线C相交于点A.B求m的取值范围,使得在抛物线上存在点M,满足MA垂 已知抛物线的方程为y^2=2px (p>0),且抛物线上各点与焦点距离的最小值为2,若点M在此抛物线上运动,点N与点M关于点A(1,1)对称,则点N的轨迹方程为要详解 设O是坐标原点,F是抛物线y^2=2px p大于0的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°则OA=? 设O是坐标原点,F是抛物线y^2=2px(p>0)焦点,A是抛物线上的一点,FA向量与x轴正向夹角为60度,则OA向量模.