点A(a,1)在椭圆x^2/4+y^2/2=1的内部,则a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:35:49
点A(a,1)在椭圆x^2/4+y^2/2=1的内部,则a的取值范围
点A(a,1)在椭圆x^2/4+y^2/2=1的内部,则a的取值范围
点A(a,1)在椭圆x^2/4+y^2/2=1的内部,则a的取值范围
把点A代到椭圆的式子里面
所以a^2/4+1/2=1
a^2=2
a=±√2
所以a的取值范围是-√2≤a≤√2
已知椭圆方程为x^2*9+y^2/4=1,在椭圆上是否存在点P(x,y)到定点A(a,0))(其中0
已知点A(0,2)及椭圆x²/4+y²=1,在椭圆上求一点P使|PA|的值最大
已知点A(0,2)及椭圆x²/4+y²=1,在椭圆上求一点P使|PA|的值最大
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的长轴长为4,且点(1,跟号3/2)在椭圆上,求椭圆方程!急
点A(a,1)在椭圆x^2/4+y^2/2=1的内部,则a的取值范围为
点A(a,1)在椭圆x^2/4+y^2/2=1的内部,则a的取值范围
急求已知椭圆方程为x^2*9+y^2/4=1,在椭圆上是否存在点P(x,y)到定点A(a,0))(其中0
点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方...点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴
已知点A(2,2),B(4,0),点M在椭圆X^2/25 +Y^2/9=1上运动,则|MA|+|MB|的最大值为?
A,B为椭圆X^2/4+y^2/2=1左右顶点A、B为椭圆X^2/4+y^2/2=1左右顶点,过直线x=4上任意T点作直线TA、TB,分别于椭圆交于M、N点,证明:点B在以MN为直径的圆内.
关于椭圆,圆锥曲线的已知椭圆x^2/a^2+y^2/b^2=1(a>b>0).已知椭圆的离心率为√6/4,A为椭圆的左顶点,O是坐标原点.若点Q在椭圆上且满足IAQI=(AOI,求直线OQ的斜率的值.
已知椭圆x^2/25+y^2/9=1的右焦点为F,点A(2,2)在椭圆内,点M是椭圆上的动点,求|MA|+|MF|的最小值.
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与x轴负半轴交于点C,A为椭圆在第一象限的点,直线OA交椭圆于另一点B,椭圆的左焦点为F,若直线AF平分线段BC,则椭圆的离心率为(1/3).
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以点M为圆心的圆与x轴相切于椭圆的右焦已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F.(1)若圆M于y轴相切,求椭圆的离心
椭圆x^2/a^2+y^2/b^2=1(a>b>0),点P(√5a/5,√2a/2)在椭圆上设A为椭圆的右顶点,O为坐标原点设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线QO的斜率
已知椭圆C:x²/a²+y²/b²=1,点P(√5a/5,√2a/2)在椭圆上,求椭圆的离心率还有一问提是:设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足绝对值AQ=AO,求直线OQ的斜率的值
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)焦点为F1 ,F2 ,点P在椭圆C上,|PF1|=4/3,|PF2|=14/3,求椭圆C的方程PF1垂直于F1F2;若直l过圆 x^2+y^2+4x-2y=0的圆心M,交椭圆C于A,B两点,且A,B关于点M对称,求直线l 的方程
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)焦点为F1 ,F2 ,点P在椭圆C上,|PF1|=4/3,|PF2|=14/3,求椭圆C的方程且F1垂直于F2.;若直l过圆 x^2+y^2+4x-2y=0的圆心M,交椭圆C于A,B两点,且A,B关于点M对称,求直线l 的方程