已知△ABC中,a=2,b=2根号3,A=30°,解此三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:01:35
已知△ABC中,a=2,b=2根号3,A=30°,解此三角形
已知△ABC中,a=2,b=2根号3,A=30°,解此三角形
已知△ABC中,a=2,b=2根号3,A=30°,解此三角形
a/sinA=b/sinB
sinB=bsinA/a=√3/2
所以B=60,或B=120
当B=60时,C=90,c=√a²+b²=4
当B=120时,C=30,c=a=2
先用正弦定理求出B,然后再求出C,最后用余弦定理求c。有不会的可以问我!
根据正弦定理知:a/sinA=b/sinB
∴2/sin30°=2√3/sinB
sinB=√3/2
又∵∠B为△ABC的内角,即:0°<∠B<180°;
∴∠B=60°或∠B=120°
当∠B=60°时,∠C=180°-(∠A+∠B)
=180°-(30°+60°)
...
全部展开
根据正弦定理知:a/sinA=b/sinB
∴2/sin30°=2√3/sinB
sinB=√3/2
又∵∠B为△ABC的内角,即:0°<∠B<180°;
∴∠B=60°或∠B=120°
当∠B=60°时,∠C=180°-(∠A+∠B)
=180°-(30°+60°)
=90°
∴此时,△ABC为以∠C为直角的RT△;
当∠B=120°时,∠C=180°-(∠A+∠B)
=180°-(30°+120°)
=30°
∴此时,△ABC为底角为30°的等腰钝角三角形;
综上所述,此三角形为以∠C为直角的RT△或以底角为30°的等腰钝角三角形。
收起