奥数-有序思考2甲组数有1、3、5、7、9、11、13、15;乙组数有2、4、6、8、10、12、14、16.每次从甲、乙两组中各取一个数相加求和.一共可以得到多少种不同的答案?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:46:20

奥数-有序思考2甲组数有1、3、5、7、9、11、13、15;乙组数有2、4、6、8、10、12、14、16.每次从甲、乙两组中各取一个数相加求和.一共可以得到多少种不同的答案?
奥数-有序思考2
甲组数有1、3、5、7、9、11、13、15;乙组数有2、4、6、8、10、12、14、16.每次从甲、乙两组中各取一个数相加求和.一共可以得到多少种不同的答案?

奥数-有序思考2甲组数有1、3、5、7、9、11、13、15;乙组数有2、4、6、8、10、12、14、16.每次从甲、乙两组中各取一个数相加求和.一共可以得到多少种不同的答案?
集合甲有8个元素,集合乙也有8个元素.
比如从甲中取1,在乙中有8种方案;
...
不管从甲中取哪一个,在乙中都有8种方案.
所以总共有8 * 8 = 64种不同的方案,
但是会出现一样的答案,比如 9+10= 7+12= 5+14= 3+16...
它们的最小值3,最大值31,他俩之间的所有的奇数都会出现,
所以答案是(31 - 3) /2 + 1 = 15.

所有的答案为3-31当中所有的奇数,个数为15个

是3~31的奇数 15种

从3开始,理论上可以得到31-3=28/2 14种答案因为答案只可能是奇数.理论上,从3-31总所有的奇数都会出现

奥数-有序思考2甲组数有1、3、5、7、9、11、13、15;乙组数有2、4、6、8、10、12、14、16.每次从甲、乙两组中各取一个数相加求和.一共可以得到多少种不同的答案? 奥数-有序思考有40位同学在做纸花,分到每人手中的纸从7张到46张各不相等.规定要用3张或4张纸做一朵花,并且要求每人必须把分给自己的纸全部用完,且尽可能多做一点花.问最后用4张纸做的 从1,2,3,…,9这九个自然数中任取三个数组成有序数组a,b,c,且a 有序数对只能由2个有序的数组成吗?有没有(1,2,3)这种有序数对?我想在三维坐标里是会用到的. 从1,2,3,...,9九个自然数中人去三个数组成有序数组A,B,C,且A>B>C,则不同的数组有? 有序思考有序思考是指( ),它的优点是( ). 竞赛题AUBUC={1,2,3,4,5,6,7,8,9,10}则满足以上条件的有序集合对(A,B,C)有多少个 用栈操作来实现一组有序数据的倒排输出问题例如,已有有序数据为:1,2,3,4,5,6,7,我们需要用栈操作的先进后出的特性来实现它们的倒排输出,即7,6,5,4,3,2,1. 从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数其中奇数的个数为?从3个偶数中取两个 不按有序排列有3种可能4个奇数中取两个 不按有序排列有6种所以3*6*A4取4 从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数其中奇数的个数为?从3个偶数中取两个 不按有序排列有3种可能4个奇数中取两个 不按有序排列有6种所以3*6*A4取4 正整数按如图的规律排列,若有序实数对(N,M)表示第N排,从左到右第M个数,则表示实数17的有序实数对是1 ---第一排 3 2---第二排 4 5 6——第三排10 9 8 7---第四 从1到1000的整数中任取三个数从1到1000中任取三个数,有序三组数(x,y,z),求x^2+y^2+z^2被7整除的有序三组数(x,y,z)的组数(x,y,z可以相等) 如何编程在一个有序数列中二分查找第一个比给定元素X大的数的位置(pascal)比如 x=5 a=1,3,6,9,10函数返回3 小于100的什么数被2 3 7除都余1当然推可以推出来,但是怎么去思考这个问题, 1-丁醇制1,2,3,4-丁四醇五步以内我刚开始思考是消去再加成再水化 可是步数太多 格子只有5个 从1,2,3,…,9这九个自然数中任取三个数组成有序数组a,b,c,且a这个题是什么意思,看懂的大概说个题意也可以 写出用0、1、2、3这四个数中任意的一个或两个数表示的所有有序数列,并说明共有几组?一道有关于平面直角坐标系的题目 将正整数按图所示的规律排列.若用有序实数(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9则(17,2)表示的数是1…… 第一排 2 3……第二排4 5 6……第三排7 8 9 10……第四排………