如图,直线y=-x+b(b>0)与双曲线y=(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:04:17
如图,直线y=-x+b(b>0)与双曲线y=(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x
如图,直线y=-x+b(b>0)与双曲线y=(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x
如图,直线y=-x+b(b>0)与双曲线y=(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x
-x+b=k/x得出X值(用公式法解)一个为A的横坐标一个为B的横从标,把B的横坐标代入y=-x+b得B的纵坐标与A的横从标相等即MO=ON,因为三角形AMO与三角形BON面积相等,所以MA=BN,所以:△AOM≌△BON,由勾股定理可得OA=OB,把A,B坐标表示出来,AB用两点间的距离公式可算出AB=根号2乘以根号下B平方减4K,因为AB=根号2,所以根号下B平方减4K=1,ON-BN=根号下B平方减4K,所以ON-BN=1,最难的是第三个结论解法如下:
过O作OM垂直AB于点D ,可得三角形AOM与AOD面积相等,三角形ODB与OBN面积相等,所以三角形AOB面积为K
选D
D
如图,直线y=-x+b(b>0)与双曲线y=k/x(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x轴于N,以下结论:1:OA=OB;2:△AOM≌△BON;3:若∠AOB=45°,则S△AOB=K;4:当AB=根号2时,ON-BN=1其中结论正确的个数为
A、1 B、2 C、3 D、4
题目是不是这样?...
全部展开
如图,直线y=-x+b(b>0)与双曲线y=k/x(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x轴于N,以下结论:1:OA=OB;2:△AOM≌△BON;3:若∠AOB=45°,则S△AOB=K;4:当AB=根号2时,ON-BN=1其中结论正确的个数为
A、1 B、2 C、3 D、4
题目是不是这样?
收起