求设函数f(x)=/x-1/+/x-a/ (1)当a=4时,求不等式f(x)>=5的解集 (2)若f(x)>=4对x属于R恒成立,求a的取值范围求解 可加分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:51:25
求设函数f(x)=/x-1/+/x-a/ (1)当a=4时,求不等式f(x)>=5的解集 (2)若f(x)>=4对x属于R恒成立,求a的取值范围求解 可加分
求设函数f(x)=/x-1/+/x-a/ (1)当a=4时,求不等式f(x)>=5的解集 (2)若f(x)>=4对x属于R恒成立,求a的取值范围
求解 可加分
求设函数f(x)=/x-1/+/x-a/ (1)当a=4时,求不等式f(x)>=5的解集 (2)若f(x)>=4对x属于R恒成立,求a的取值范围求解 可加分
(1)f(x)=/x-1/+/x-4/
当x>4,f = 2x - 5 ≥ 5,所以x≥5
当1 ≤ x ≤ 4,f = 3 ≤ 5恒成立
当x<1,f = 5 - 2x≥ 5,所以x ≤ 0
综上所述,解集为{x | x≤ 0或者1 ≤ x ≤ 4或者x ≥ 5}
(2)若f(x)>=4对x属于R恒成立
可以由数轴知,x的取值在1和a之间时f 取到最小值,
当a > 1时,a - 1≥ 4,所以a≥ 5
当a<1时,1 - a≥ 4,所以a≤ -3
a = 1不能使得f≥4恒成立.
所以a≤ -3或者a≥5
不知你还需不需要,但我认为在不等式这儿,多用用三角不等式会简单许多,免掉一些讨论
f(x)=/x-1/+/x-a/>=/x-1-x+a/=/a-1/
则只需/a-1/>=4即可
解得a>=5或a<=-3
(1)1. x≤1a=4时,f(x)=-2x+6>=5解得 x<=1/2 所以此时x<=1/2
2 .1
综合得到解集为 {x| x<=1/2 }
(2).由于
f(x)=/x-1/+/x-a/ 当x取值在1和a构成的...
全部展开
(1)1. x≤1a=4时,f(x)=-2x+6>=5解得 x<=1/2 所以此时x<=1/2
2 .1
综合得到解集为 {x| x<=1/2 }
(2).由于
f(x)=/x-1/+/x-a/ 当x取值在1和a构成的区间内,或者取1或着a时候有最小值, (这是一个很有用的定理,记着哈) 因此2种情况:
取a时候f(a)=|a-1|>=4 得到a>=5 或者a=<-3
2.取1 f(1)=|1-a|>=4得到a=<-3或者a>=5(其实和上面一样哈)
综合二者取交集得到{a|a=<-3或者a>=5}
收起