设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0有一步不懂请大侠解(2)若数列{an}的公比满足q=f(m)且b1=a1,bn=32 f(bn-1)(n∈N*,n≥2),求证{1 bn }为等差数列,并求bn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:53:35
设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0有一步不懂请大侠解(2)若数列{an}的公比满足q=f(m)且b1=a1,bn=32 f(bn-1)(n∈N*,n≥2),求证{1 bn }为等差数列,并求bn
设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0有一步不懂请大侠解
(2)若数列{an}的公比满足q=f(m)且b1=a1,bn=32
f(bn-1)(n∈N*,n≥2),求证{1
bn
}为等差数列,并求bn.
答案是2)由b1=a1=1,q=f(m)=2m m+3 ,n∈N且n≥2时, bn=3 2 f(bn-1)=3 2 •2bn-1 bn-1+3 , (到这步就不懂了)能否解释下?⇒ 得 bnbn-1+3bn=3bn-1⇒1 bn -1 bn-1 =1 3 . ∴{1 bn }是1为首项1 3 为公差的等差数列, ∴1 bn =1+n-1 3 =n+2 3 , 故有bn=3 n+2 .
求证{1 /bn }为等差数列
并求bn
设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0有一步不懂请大侠解(2)若数列{an}的公比满足q=f(m)且b1=a1,bn=32 f(bn-1)(n∈N*,n≥2),求证{1 bn }为等差数列,并求bn
不好意思,你打得实在让人费解,看一下我的解题过程吧,我重做一遍:
1.(3-m)s(n)+2ma(n)=m+3
n=1,(3-m)s(1)+2ma(1)=m+3
a(1)=1
(3-m)s(n-1)+2ma(n-1)=m+3
(3+m)a(n)=2ma(n-1)
a(n)/a(n-1)=2m/(3+m)=q
a(n)=a(1)q^(n-1)=[2m/(m+3)]^(n-1)
所以数列{a(n)为等比数列
2.f(m)=2m/(m+3)
b(n)=3f(b(n-1))/2
b(n)=3*2b(n-1)/(2(b(n-1)+3)=3b(n-1)/(b(n-1)+3)
1/b(n)=1/3+1/b(n-1)
1/b(n)-1/b(n-1)=1/3=d
所以数列{1/b(n)}是等差数列