验证:根号[1+n^2分之1+(n+1)^2分之1]=1又n(n+1)分之1[ ]表示在同一个根号里然后要证明第一步=1+n分之1-(n+1)分之一=最后一步

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:21:16

验证:根号[1+n^2分之1+(n+1)^2分之1]=1又n(n+1)分之1[ ]表示在同一个根号里然后要证明第一步=1+n分之1-(n+1)分之一=最后一步
验证:根号[1+n^2分之1+(n+1)^2分之1]=1又n(n+1)分之1
[ ]表示在同一个根号里
然后要证明第一步=1+n分之1-(n+1)分之一=最后一步

验证:根号[1+n^2分之1+(n+1)^2分之1]=1又n(n+1)分之1[ ]表示在同一个根号里然后要证明第一步=1+n分之1-(n+1)分之一=最后一步
首先,根号下的式子

开根号后是[n(n+1)+1]/[n(n+1)]
等于1又n(n+1)分之1