函数y=根号下x^2-2x+2 + 根号下x^2-4x+8 的最小值为什么在坐标系上两点坐标分别是(1,1)(2,2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:55:27

函数y=根号下x^2-2x+2 + 根号下x^2-4x+8 的最小值为什么在坐标系上两点坐标分别是(1,1)(2,2)
函数y=根号下x^2-2x+2 + 根号下x^2-4x+8 的最小值
为什么在坐标系上两点坐标分别是(1,1)(2,2)

函数y=根号下x^2-2x+2 + 根号下x^2-4x+8 的最小值为什么在坐标系上两点坐标分别是(1,1)(2,2)
y=根号下x^2-2x+2 + 根号下x^2-4x+8
=根号下((x-1)^2+(0-1)^2) + 根号下((x-2)^2+(0-(-2))^2)
令A(x,0) ,B(1,1),C(2,-2)
那么y=|AB|+|AC|
理解了没?剩下的就是A过直线BC
如果C(2,2),那么就麻烦了,还得对称一下什么的.画个图就清楚了

由题意可得:这个式子可以等价与在平面上的一点(x,0)到(1,1)(2,2) 的最小距离,显然这点是经过(1,1)(2,2) 两点的中垂线与x的交点,所以该中垂线为y=-x+3与x轴的交点为(3,0)即x=3代人可得:所求y的最小值为2√5