已知函数y=(sinx+cosx)²+2cos²x. (1)求它的递减区间; (2)求它的最大值和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 22:40:39
已知函数y=(sinx+cosx)²+2cos²x. (1)求它的递减区间; (2)求它的最大值和最小值
已知函数y=(sinx+cosx)²+2cos²x. (1)求它的递减区间; (2)求它的最大值和最小值
已知函数y=(sinx+cosx)²+2cos²x. (1)求它的递减区间; (2)求它的最大值和最小值
y=1+2sinxcox+1+cos2x
=2+sin2x+cos2x
=2+sqr(2)sin(2x+π/4)
2x+π/4∈[2kπ+π/2,2kπ+3/2π] k∈Z
x∈[kπ+π/8,kπ+5/8π] k∈Z
ymax=2+sqr2
ymin=2-sqr2
y=(sinx+cosx)^2+2(cosx)^2
=1+2sinxcosx+cos2x+1
=sin2x+cos2x+2
=√2[(√2/2)sin2x+(√2/2)cos2x]+2
=√2sin(2x+π/4)+2
(1)
2kπ+π/2<=2x+π/4<=2kπ+3π/2,...
全部展开
y=(sinx+cosx)^2+2(cosx)^2
=1+2sinxcosx+cos2x+1
=sin2x+cos2x+2
=√2[(√2/2)sin2x+(√2/2)cos2x]+2
=√2sin(2x+π/4)+2
(1)
2kπ+π/2<=2x+π/4<=2kπ+3π/2,则kπ+π/8<=x<=kπ+5π/8
所以,单调递减区间是:[kπ+π/8,kπ+5π/8]
(2)
最大值是2+√2、最小值是2-√2。
.
收起