证明:若任意x,y∈R,有f(x+y)=f(x)+f(y),且f(x)在0连续,则函数f(x)在R连续,且f(x)=ax,其中a=f(1)是常数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:13:08

证明:若任意x,y∈R,有f(x+y)=f(x)+f(y),且f(x)在0连续,则函数f(x)在R连续,且f(x)=ax,其中a=f(1)是常数
证明:若任意x,y∈R,有f(x+y)=f(x)+f(y),且f(x)在0连续,则函数f(x)在R连续,且f(x)=ax,其中a=f(1)是常数

证明:若任意x,y∈R,有f(x+y)=f(x)+f(y),且f(x)在0连续,则函数f(x)在R连续,且f(x)=ax,其中a=f(1)是常数
首先证明:对任意整数n与实数x,有f(nx) = nf(x).
对n用数学归纳法.
在条件中代入x = y = 0可得f(0) = 0,即n = 0时结论成立.
假设n = k时结论成立,取y = kx,由条件得:
f((k+1)x) = f(x)+f(kx) = f(x)+kf(x) = (k+1)f(x),即n = k+1时结论也成立.
由数学归纳法原理,结论对任意自然数n成立.
而当n为负整数,由0 = f(0) = f(nx)+f(-nx) = f(nx)-nf(x)得f(nx) = nf(x),结论同样成立.
因此对任意整数n与实数x,有f(nx) = nf(x).
当x为有理数,可设x = m/n,其中m,n为整数.
于是nf(x) = f(nx) = f(m) = mf(1) = am,得f(x) = am/n = ax.
即f(x) = ax对任意有理数成立.
如果证明了f(x)的连续性,则对任意实数x,取有理数数列{x[n]}收敛到x,
可得f(x) = lim{n → ∞} f(x[n]) = lim{n → ∞} ax[n] = ax,即得结论.
因此只需证明f(x)的连续性.
f(x)在0连续,即lim{x → 0} f(x) = f(0) = 0,
也即对任意ε > 0,存在δ > 0,使得|x| < δ时成立|f(x)| < ε.
于是对任意实数x0,当|x-x0| < δ时成立|f(x)-f(x0)| = |f(x-x0)| < ε.
即得lim{x → x0} f(x) = f(x0),f(x)在x0处连续.
由x0的任意性,f(x)在R上连续.

f(x)定义在R上,对任意x y都有f(x+y)=f(x)+f(y),若f(x)在x=0处连续,证明f(x)对一切x均连续. 已知函数满足对任意xy属于R都有f(x+y)=f(x)*f(y)-f(x)-f(y)+2成立,且x2,证明x 若函数y=f(x)对任意,x,y∈R,恒有f(x+y)=f(x)+f(y),求证是奇函数 f(x)在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)若f(k*3^x)+f(3^x-9^x-2) 定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,证明任意x∈R,f(x+c)=-f(x)成立 对任意的实数x、y∈R有f(x+y)=f(x)f(y),当x 函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立,当x不等于y时,f(x)不等于f(y),证明1;若x>0,则f(x)>0; 2:f(x)是R上的单调递增函数. 设 f(x) 是定义在R上的函数,且对于任意x、y ∈R ,恒有 f(x+y)=f(x) f(y), 且x1. 证明:(1)当f(0)=1, 且x 高一数学 函数f(x),x属于R 若对任意实数x,y都有f(x+y)=f(x)+f(x),判断奇偶高一数学 函数f(x),x属于R 若对任意实数x,y都有f(x+y)=f(x)+f(x),判断奇偶性并证明变式:若都有f(x+y)+f(x-y)=2f(x)f(y)呢 要详细的过 函数f(x)对任意x,yR都有f(x+y)=f(x)+f(y)-1,并且当x0时,f(x)1.证明函数在R上时增函数函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y)-1,并且当x大于0时,f(x)大于1.1,证明函数f(x)在R上是增函数,若不等式f(a的平方 高一函数性质证明题f(x)是定义在R上的函数,对于任意x,y∈R,均有f(x+y)=f(x)f(y),当x>0时0 定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)若f(2*3^x)+f(3^x-9^x-2) 抽象函数的两题.高手来.一、设函数f(x)的定义域为R,对于任意实数x,y.总有f(x+y)=f(x)·f(y),且x>0时,0、证明f(x)在R上单调递减3>、设A={ (x,y) | f(x^2)·f(y^2)>f(1) }.B={ (x,y) | f(ax-y+2)=1,a∈R },若A∩B=空集,确 f(x)是定义在R上的函数,且对任意实数x,y都有 f(x+y)=f(x)+f(y)-1成立,当f(x)是定义在R上的函数,且对任意实数x,y都有 f(x+y)=f(x)+f(y)-1成立,当x>0时,f(x)>1.1.证明f(x)在R上是增函数2.若f(4)=5,求f(2)的值3. 已知函数f(x)是定义在R上的函数,若对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.1.判断函数的奇偶性;2.判断函数f(x)在R上是增函数,还是减函数,并证明你的结论. 若函数f(x)的定义域是R,且对任意X,Y属于R,都有f(xy)=f(x)+f(y),且f(-1)=0,证明f(x)是偶函数 已知二次函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x) 已知二次函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)