设三角形ABC的内角A,B,C,所对的边长分别为a,b,c,向量m=(cosA,cosC),向量n=(根号3c-2b,根号3a),且向量m垂直向量n1)求角A的大小2)若角B=派\6,BC边上的中线AM的长为根号7,求三角形ABC的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:59:17

设三角形ABC的内角A,B,C,所对的边长分别为a,b,c,向量m=(cosA,cosC),向量n=(根号3c-2b,根号3a),且向量m垂直向量n1)求角A的大小2)若角B=派\6,BC边上的中线AM的长为根号7,求三角形ABC的面积
设三角形ABC的内角A,B,C,所对的边长分别为a,b,c,向量m=(cosA,cosC),向量n=(根号3c-2b,根号3a),且向量m垂直向量n
1)求角A的大小
2)若角B=派\6,BC边上的中线AM的长为根号7,求三角形ABC的面积

设三角形ABC的内角A,B,C,所对的边长分别为a,b,c,向量m=(cosA,cosC),向量n=(根号3c-2b,根号3a),且向量m垂直向量n1)求角A的大小2)若角B=派\6,BC边上的中线AM的长为根号7,求三角形ABC的面积
(1)
m=(cosA,cosC),n=(√3c-2b,√3a)
m垂直向量n
=>m.n=0
(cosA,cosC).(√3c-2b,√3a)=0
(√3c-2b)cosA+ √3a(cosC)=0
(√3c-2b)(b^2+c^2-a^2)/(2bc)+ √3(a^2+b^2-c^2)/(2b) =0
-(b^2+c^2-a^2)/c +(√3/(2b))(2b^2) =0
(b^2+c^2-a^2) = √3bc
a^2=b^2+c^2 -√3bc
by cosine rule
-√3bc = -2bc cosA
cosA =√3/2
A = π/6
(2)
B=π/6,M is mid point of BC
|AM| = √7
A=B => a=b
by sine rule
c/sinC = a/sinA
c = √3a
consider 三角形ABM
|AM|^2 = c^2 +(a/2)^2 - (ac)cosB
7 = 3a^2+a^/4 - (3/2)a^2
7 = 7a^2/4
a^2 = 4
a=2
三角形ABC的面积
=(1/2)absinC
=(1/2)a^2 ( √3/2)
=(1/2)4(√3/2))
= √3

书上有公式 ,看了就知道了。

asdsa

三角形ABC的三内角A,B,C所对的边的长分别为a,b,c.设向量p=(a+b,c) 设三角形ABC的内角A、B、C所对的边分别是abc,且aCOSC+1/2c=b,(1)求角A的大小 设三角形ABC的内角A,B,C所对的边为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值 设三角形ABC的内角ABC所对的边分别为abc,且acosB-bcosA=1/2c,求tan(A-B)的最大值 设三角形ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则三角形ABC的形状为?2.设三角形ABC的内角A,C所对的边分别为a,若b+c=2a,则3sinA=5sinB,则角C=? 设三角形ABC 的内角A,B,C所对的边分别为a,b,c,若bcosC ccosB=asinA 设三角形ABC为锐角三角形,a,b,c分别为内角A,B,C所对的边,且SINA*SINA=SIN(60 设三角形abc的内角A,B,C所对边长为a,b,c,且acosB-bcosA=4/5c,求tan(A-B)的最大值 设三角形ABC的内角A,B,C所对的边为a,b,c且cosB=4/5 b=2 a+c=2根号10,求三角形ABC面积同上 设三角形abc的内角ABC所对的边长分别为abc,(a+b+c)×(a-b+c)=ac设三角形abc的内角abc所对的边长分别为abc,(a+b+c)×(a-b+c)=ac1,求B角2,若sinAsinC=(√3-1)/4,求C 设abc分别是三角形abc的三个内角abc所对的边,s是三角形abc的面积,已知a=4,b=5,s=5根号3 求角c 求c边的 设三角形ABC的内角A.B.C.所对的边分别为a.b.c.已知a等于1,b等于2,cosC等于四分之一,求三角形ABC的周长 已知三角形ABC的内角A,B,C所对的边分别为abc若c^2 设三角形ABC的内角A,B,C,所对的边分别为a,b,c,已知a=1 b=2 cosC=1/4求三角形ABC得周长 设三角形ABC的内角 A.B.C所对的边分别为a.b.c,以知a=1,b=2,cosC=1/4求三角形ABC周长和面积 设三角形ABC的内角A,B,C,所对的边分别为a,b,c,已知a=1 b=2 cosC=1/4求三角形ABC得周长 三角形ABC的三个内角A,B,C所对边的边长分别为a,b,c,设向量P=(a+c,b),Q=(b-a,c-a),若p平行于q,则角C的大 设三角形ABC的内角A.B.C所对边长分别为a.b.c,且acosB-bcosA=4/5c,则tanA/tanB的值