已知圆C1:x^2+y^2+2x+8y-8=0,圆C2:x^2+y^2-4x-4y-2=0试判断圆C1与圆C2的关系答案上直接联立两圆方程,得到二元一次方程,这个很好理解,不过如果是Δ=0或者Δ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:39:00

已知圆C1:x^2+y^2+2x+8y-8=0,圆C2:x^2+y^2-4x-4y-2=0试判断圆C1与圆C2的关系答案上直接联立两圆方程,得到二元一次方程,这个很好理解,不过如果是Δ=0或者Δ
已知圆C1:x^2+y^2+2x+8y-8=0,圆C2:x^2+y^2-4x-4y-2=0试判断圆C1与圆C2的关系
答案上直接联立两圆方程,得到二元一次方程,这个很好理解,不过如果是Δ=0或者Δ<0圆的位置关系怎么判断?究竟是相离还是内含?外切还是内切呢?

已知圆C1:x^2+y^2+2x+8y-8=0,圆C2:x^2+y^2-4x-4y-2=0试判断圆C1与圆C2的关系答案上直接联立两圆方程,得到二元一次方程,这个很好理解,不过如果是Δ=0或者Δ
如果要了解这个问题的本质,就看看下面的东西:
(都是自己写的,不是网上抄的)
对于两个圆方程:
F(x,y)=(x-a)^2+(y-b)^2-p^2=0
G(x,y)=(x-m)^2+(y-n)^2-q^2=0
如果我们联立这两个方程,
通过F(x,y)-G(x,y)=0,我们就得到了一个二元一次方程,这其实是一条直线.
如果两个圆相交,那么显然,这条直线是一条通过这两个圆的交点的直线.
但如果两个圆相切或者相离呢?
为了弄清这个问题,我要引入两个概念:圆幂和根轴.
圆幂表述了一个点和一个圆之间的关系.
考虑一个点P和一个圆O.OP的距离为d,圆O的半径为R,
则定义P关于圆O的圆幂为d^2-R^2.
显然,如果P在圆外则圆幂>0,在圆内则圆幂<0,在圆上则圆幂=0.
更深入的:
过P作一条直线.
如果该直线与圆相切,切点为E,可以证明,PE^2=d^2-R^2.
如果该直线与圆相交,相交于A,B,可以证明:PA*PB=d^2-R^2.
注意:这里的PA和PB是有向线段.PA*PB=d^2-R^2的正负性说明了点与圆的关系.
下面来说说根轴.
根轴是关于两个圆的一条直线:
给定两个圆A和B,如果X关于A和B等幂(圆幂相等),那么X的轨迹就是这两个圆的根轴.
可以证明,两个圆的根轴是一条直线.且这条直线垂直于两圆的圆心的连线.
特殊的:
如果两个圆相交,根轴就是过这两个圆的交点的一条直线.(即公共弦所在直线)
如果两个相切,根轴就是过这两个圆的切点的公切线.
如果两个圆相离,则根轴在两圆之间,和两圆均相离.
如果两个圆内含,则根轴在和两圆都不相交,在大圆的外面.
最后我们来看看题目:
题目给了两个圆的方程,让我们来判断它们的关系.
F(x,y)=(x-a)^2+(y-b)^2-p^2=0
G(x,y)=(x-m)^2+(y-n)^2-q^2=0
首先要讨论这两个圆是否是同心圆,同心圆是不存在根轴的.
如果两圆不是同心圆,那么继续下面的步骤:
我们联立方程,得到一条直线:
L(x,y)=F(x,y)-G(x,y)=0.
那么这条直线上的任意一点p(x,y)满足F(x,y)-G(x,y)=0,
即:F(x,y)=G(x,y)=k,这里k是一个常数.
注意到,这里:
F(x,y)=(x-a)^2+(y-b)^2-p^2=d1^2-p^2
G(x,y)=(x-m)^2+(y-n)^2-q^2=d2^2-q^2
其中:
d1是p(x,y)到F(x,y)=0的圆心(a,b)的距离.
d2是p(x,y)到G(x,y)=0的圆心(m,n)的距离.
所以,由根轴的定义可以看出,L(x,y)=0上的所有的点关于圆F(x,y)=0和圆G(x,y)=0等幂.
也就是说,L(x,y)=0就是这两个圆的根轴.
现在我们可以通过求圆心到根轴的距离来判断两个圆的关系.
如果圆心到根轴的距离小于半径,说明这两个圆相交,这条根轴过两圆的交点.
如果圆心到根轴的距离大于半径,说明这两个圆不相交.
至于是相离还是内含,我们只要考虑L(a,b)和L(m,n)的正负即可.
如果正负性相同,说明(a,b)和(m,n)在L(x,y)=0的同一侧,两圆内含.
如果正负性不同,说明(a,b)和(m,n)在L(x,y)=0的两侧,两圆相离.
如果圆心到根轴的距离等于半径,说明这两个圆相切,这条根轴是过切点的公切线.
至于是外切还是内切,我们也只要考虑L(a,b)和L(m,n)的正负即可.
如果正负性相同,说明(a,b)和(m,n)在L(x,y)=0的同一侧,两圆内切.
如果正负性不同,说明(a,b)和(m,n)在L(x,y)=0的两侧,两圆外切.

直接联立两个方程这种方法一般是用来求过两圆交点的直线方程
而且前提是我们已经知道这两个圆是相交的 例如
给出两个圆的方程
(x-1)^2+(y-1)^2-1=0
(x+1)^2+(y+1)^2-1=0
这两个圆我们很显然知道它们是相离的
我们照样可以联立 得到一个方程 x+y=0
我们仔细观察这个方程不难发现 这条直线就是两个圆的对称轴 <...

全部展开

直接联立两个方程这种方法一般是用来求过两圆交点的直线方程
而且前提是我们已经知道这两个圆是相交的 例如
给出两个圆的方程
(x-1)^2+(y-1)^2-1=0
(x+1)^2+(y+1)^2-1=0
这两个圆我们很显然知道它们是相离的
我们照样可以联立 得到一个方程 x+y=0
我们仔细观察这个方程不难发现 这条直线就是两个圆的对称轴
答案上所给出的方法应该是 得到这个方程然后再把这个直线方程和任意一个圆的方程联立 得到一个一元二次方程 再来判断根的判别式 这是属于判断直线和圆的位置关系里面的 不要跟圆和圆的位置关系的判定弄混
圆和圆的位置关系的判定 最直接也是最有效的方法就是 先把它们化为标准式 就可以看出两个圆的圆心 还有半径了 这样再求出两个圆心之间的距离和两个半径的和作比较就可以了
答案里面这种方法也可以 但是稍微有些麻烦 而且有一定得局限性
Δ>0还好说 是相交 但是如果是Δ=0或者Δ<0的时候就不好判断了

收起

已知平面区域C1:x^2+y^2 已知圆C1:(x+1)^2+(y-1)^2=1,圆C2与圆C1关于x-y-1=0对称,求C2 已知圆C1:(x+1)^2+(y-1)^2=1,圆C2与圆C1关于x-y-1=0对称,求C2 已知圆C1:X的平方+Y的平方+2Y+3Y+1=0 圆:C2:X的平方+Y的平方+4X+3Y=0 判断C1与C2的位置关系 已知曲线C1:y=x2和C2:y=-(x-2)2,求C1和C2的公切线 已知圆C1:x^2+y^2+2x+3y+1=0,圆C2:x^2+y^2+4x+3y+2=0,判断圆C1与圆C2d的位置关系! 已知圆C1:x^2+y^2+2x+3y+1=0,圆C2:x^2+y^2+4x+3y+2=0,判断圆C1与圆C2的位置关系如题....... 已知圆C1:x^2+y^2+2x+3y+1=0,圆C2:x^2+y^2+4x+3y+2=0,判断圆C1与圆C2的位置关系 急. 已知圆C1:x平方+y平方+2x+6y+9=0和圆C2:x平方+y平方-6x+2y+1=0,求圆C1和圆C2的公切线方程 已知圆c1:x+y+2x+3y+1=0,圆c2:x+y+4x+3y+2=0,判断圆c1与圆c2的位置关系谢谢了, 已知圆C1:x平方+y平方+2x+6y+9=0和圆C2:x平方+y平方-6x+2y+1=0,求圆C1和圆C2的公切线方程 已知圆C1:X2 + Y2 + 2X + 8Y – 8 = 0,C2 :X2 + Y2 + 4X - 4Y – 2 = 0. 是判断我要详细过程,谢谢!已知圆C1:X2 + Y2 + 2X + 8Y – 8 = 0,C2 :X2 + Y2 + 4X - 4Y – 2 = 0. 是判断圆C1与C2的关系。 t已知n条直线,l1:x-y+C1=0,C1=根号2,l2:x-y+C2=0,l3:x-y+C3=0 ……ln:x-y+Cn=0(其中C1 已知两圆c1:x^2+y^2-2x=0,c2:x^2+y^2+4y=0,则两圆的公共弦长.急 已知两圆C1:x^2+y^2-2x+10y-24=0,C2:x^2+y^2+2x+2y-8=0,则以两圆公共弦为直径的圆方程是 已知圆c1:x^2+y^2+2x+6y+6=0.圆C2:x^2+y^2-4x-8y+7=0,求两圆的圆心距 已知P(x,y)为圆C1:(x+3)^6+(y-4)^2=1上任意一点.求(y-6)/x的最值 已知圆C1:x²+y²+2x+8y-8=0,圆C2:x²+y²-4x-4y-2=0.求两圆的公共弦所在直线方程及公共弦长