设A为m*n矩阵,B为n阶矩阵,且r(A)=n.求证:(1)如果AB=O,则B=O;(2)如果AB=A,则B=I.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:42:58
设A为m*n矩阵,B为n阶矩阵,且r(A)=n.求证:(1)如果AB=O,则B=O;(2)如果AB=A,则B=I.
设A为m*n矩阵,B为n阶矩阵,且r(A)=n.求证:(1)如果AB=O,则B=O;(2)如果AB=A,则B=I.
设A为m*n矩阵,B为n阶矩阵,且r(A)=n.求证:(1)如果AB=O,则B=O;(2)如果AB=A,则B=I.
(1) r(A)=n
AX=0 X只有零解 所以B就是零解组成的矩阵,即零矩阵
(2)AB=A
A(B-E)=0 由(1)知道(B-I)=0
B=I
设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)
设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵
设A为m*n阶矩阵,B为n*m阶矩阵,且AB=E则R(A)=?,R(B)=?
设A,B均为n阶矩阵,r(A)
设A,B均为n阶矩阵,且AB=BA求证r(A+B)
设A,B均为n阶矩阵,且AB=BA,证r(A+B)
设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是A 大于m B 小于m C 等于m D等于n
设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题
设A为m阶实对称矩阵且正定,B为m×n矩阵,证明:BTAB为正定矩阵的充要条件是rankB=n
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
设A为M乘N的矩阵,且A的秩R(A)=M
设A为m*n矩阵,且r(A)=r
设A为m*n矩阵,且R(A)=r
设A为m*n矩阵,且r(A)=r
设A为m*n矩阵,B为n*m矩阵,其中n
设A为m*n矩阵,B为n*m矩阵,其中n
设A为m*n矩阵,并且r(A)=n,又B为n阶矩阵,求证:如果AB=A则B=E
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为 r1,矩阵B=AC的秩为r,则A ,r>r1 B,r