设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:43:12

设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为
设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为

设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为
∫上2下0;f(x)dx
=∫上2下π/2;f(x)dx+∫上π/2下0;f(x)dx
=∫上2下π/2;1dx+∫上π/2下0;sinxdx
=x│上2下π/2-cosx│上π/2下0
=(2-π/2)-(0-1)
=3-π/2

∫上2下0;f(x)dx
=∫上2下π/2;f(x)dx+∫上π/2下0;f(x)dx
=∫上2下π/2;1dx+∫上π/2下0;sinxdx
=x│上2下π/2-cosx│上π/2下0
=(2-π/2)-(0-1)
=3-π/2