设数列[an}的前n项和为Sn,已知a1=1且满足3Sn的平方=an(3Sn-1),1求{1/Sn}为等差数列 1.求{1/Sn}为等差数列2.若bn=Sn/3n+1,数列{bn}的前n项和为Tn,求Tn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:18:52
设数列[an}的前n项和为Sn,已知a1=1且满足3Sn的平方=an(3Sn-1),1求{1/Sn}为等差数列 1.求{1/Sn}为等差数列2.若bn=Sn/3n+1,数列{bn}的前n项和为Tn,求Tn
设数列[an}的前n项和为Sn,已知a1=1且满足3Sn的平方=an(3Sn-1),1求{1/Sn}为等差数列 1.求{1/Sn}为等差数列
2.若bn=Sn/3n+1,数列{bn}的前n项和为Tn,求Tn
设数列[an}的前n项和为Sn,已知a1=1且满足3Sn的平方=an(3Sn-1),1求{1/Sn}为等差数列 1.求{1/Sn}为等差数列2.若bn=Sn/3n+1,数列{bn}的前n项和为Tn,求Tn
1.n>1,
3Sn^2=An(3Sn -1)
An=Sn-S(n-1)下标
3Sn^2=(3Sn -1)[Sn-S(n-1)]=3Sn^2-3SnS(n-1)-Sn+S(n-1)
3SnS(n-1)=S(n-1)-Sn
[S(n-1)-Sn]/[SnS(n-1)]=3
1/Sn - 1/S(n-1) = 3
1/Sn=1+3(n-1)=3n-2
当n=1时也满足.
所以{1/Sn}为等差数列
2.bn=Sn/3n+1=1/[(3n-2)(3n+1)]=(1/3)[1/(3n-2) - 1/(3n+1)]
3Tn=(1-1/4)+(1/4-1/7)+(1/7-1/10)+.+[1/(3n-2) - 1/(3n+1)]
=1- 1/(3n+1)=3n/(3n+1)
Tn=n/(3n+1)
你题目说什么啊,是不是打错了?
设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列
设数列an的前n项和为Sn,已知a1=1,3an+1=Sn,求数列an的通项公式
设数列an的前n项和为Sn,已知a1=1,3an+1=Sn,求数列an的通项公式
设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn
设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn
设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式
设数列{an}的前n项和为Sn,已知a1=a,An+1 =Sn+3^n (n∈N+),设bn=Sn-3^n,求数列{bn}的通项公式.
已知数列{an}前n项和为Sn,a1=2,Sn=n2+n,(1)求数列{an}的通项公式 (2)设{1/Sn}的前n项和为Tn,求证Tn
设数列an的前n项和为Sn 已知a1=1 na的第n+1次=(n+2)Sn(n属于N正) 证明数列Sn/n是等比数列并求Sn 若数列...设数列an的前n项和为Sn 已知a1=1 na的第n+1次=(n+2)Sn(n属于N正) 证明数列Sn/n是等比数列并求Sn 若
设数列an的首项a1等于1,前n项和为sn,sn+1=2n设数列an的首项a1等于1,前n项和为sn,sn+1=2n
(1/2)设数列[an]的前n项和为Sn,已知a1=1,Sn+1=2Sn+n+1.1,求数列[an]的通项公式.2,若bn=n/an+1-an,
高一数学:设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2,求数列AN的通项公式设数列{an}的前n项和为Sn,已知a1=1,S(n+1)=4an+2,求数列AN的通项公式
设数列an的前n项和为sn,已知a1=a,a不等于3,a(n+1)=sn+3^n
强大的数学题:设数列{An}的前N项和为Sn已知A1=.设数列{An}的前N项和为Sn,已知A1=1,A2=6,A3=11,且(5n-8)Sn+1 - (5n+2)Sn = -20n-8 (n=1,2,3,4,.)请证明数列{An}为等差数列
第一题:设数列{an}的前n项和为Sn,已知a1=27且S9=S19.求当n为何值时Sn最大,并求出最大值?第二题:设数列{an}的前n项和为Sn.已知a1=1,Sn+1=4n+2.求数列的{an}的通项公式?先就这二题,就是数列,
已知数列an中,a1=2,an+1=4an-3n+1,求证数列{an-n}为等比数列设{an}的前n项和Sn,求S(n-1)-4Sn的最大值
设数列{an}的前n项和为Sn,a1=10,a(n+1)=9Sn+10